بدائل البحث:
process optimization » robust optimization (توسيع البحث), policy optimization (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), wolf optimization (توسيع البحث)
binary mask » binary image (توسيع البحث)
mask model » mask models (توسيع البحث), risk model (توسيع البحث), base model (توسيع البحث)
a process » _ process (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
process optimization » robust optimization (توسيع البحث), policy optimization (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), wolf optimization (توسيع البحث)
binary mask » binary image (توسيع البحث)
mask model » mask models (توسيع البحث), risk model (توسيع البحث), base model (توسيع البحث)
a process » _ process (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
-
21
Training losses for N = 10.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
22
Normalized computation rate for N = 10.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
23
Summary of Notations Used in this paper.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
24
Wilcoxon test results for feature selection.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
25
Feature selection metrics and their definitions.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
26
Statistical summary of all models.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
27
Feature selection results.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
28
ANOVA test for feature selection.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
29
Classification performance of ML and DL models.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
30
-
31
Hyperparameters of the LSTM Model.
منشور في 2025"…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …"
-
32
The AD-PSO-Guided WOA LSTM framework.
منشور في 2025"…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …"
-
33
Prediction results of individual models.
منشور في 2025"…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …"
-
34
Dynamic resource allocation process.
منشور في 2025"…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …"
-
35
Event-driven data flow processing.
منشور في 2025"…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …"
-
36
-
37
-
38
Flowchart scheme of the ML-based model.
منشور في 2024"…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …"
-
39
-
40
MCLP_quantum_annealer_V0.5
منشور في 2025"…This paper presents a quantum computing path for Transformation-to-Sampling-to-Verification of geospatial optimization problems, adaptable to the controlled qubit scale and coherence constraints under current NISQ conditions. …"