Search alternatives:
process optimization » model optimization (Expand Search)
yet optimization » art optimization (Expand Search), lead optimization (Expand Search), path optimization (Expand Search)
mask process » based process (Expand Search), basic process (Expand Search), a process (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search)
binary mask » binary image (Expand Search)
based yet » based cft (Expand Search)
process optimization » model optimization (Expand Search)
yet optimization » art optimization (Expand Search), lead optimization (Expand Search), path optimization (Expand Search)
mask process » based process (Expand Search), basic process (Expand Search), a process (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search)
binary mask » binary image (Expand Search)
based yet » based cft (Expand Search)
-
1
A* Path-Finding Algorithm to Determine Cell Connections
Published 2025“…</p><p dir="ltr">Astrocytes were dissociated from E18 mouse cortical tissue, and image data were processed using a Cellpose 2.0 model to mask nuclei. …”
-
2
Image processing workflow.
Published 2020“…<p>Raw fluorescent microscope images (a) were processed with a binary segmentation algorithm, and clusters of bacterial cells were manually annotated. …”
-
3
-
4
<i>hi</i>PRS algorithm process flow.
Published 2023“…From this dataset we can compute the MI between each interaction and the outcome and <b>(D)</b> obtain a ranked list (<i>I</i><sub><i>δ</i></sub>) based on this metric. <b>(E)</b> Starting from the interaction at the top of <i>I</i><sub><i>δ</i></sub>, <i>hi</i>PRS constructs <i>I</i><sub><i>K</i></sub>, selecting <i>K</i> (where <i>K</i> is user-specified) terms through the greedy optimization of the ratio between MI (<i>relevance</i>) and a suitable measure of similarity for interactions (<i>redundancy)</i> (cf. …”
-
5
SHAP bar plot.
Published 2025“…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …”
-
6
Sample screening flowchart.
Published 2025“…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …”
-
7
Descriptive statistics for variables.
Published 2025“…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …”
-
8
SHAP summary plot.
Published 2025“…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …”
-
9
ROC curves for the test set of four models.
Published 2025“…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …”
-
10
Display of the web prediction interface.
Published 2025“…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …”
-
11
-
12
-
13
-
14
-
15
-
16
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
-
17
-
18
PathOlOgics_RBCs Python Scripts.zip
Published 2023“…This process generated a ground-truth binary semantic segmentation mask and determined the bounding box coordinates (XYWH) for each cell. …”
-
19
Supplementary Material 8
Published 2025“…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…”