Showing 1 - 15 results of 15 for search '(( binary mask warm optimization algorithm ) OR ( binary plot based optimization algorithm ))', query time: 0.54s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8

    Sample image for illustration. by Indhumathi S. (19173013)

    Published 2024
    “…The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. Finally, the plot of location feature distance illustrates that CBFD exhibits minimal distance compared to DITF and Histogram of Oriented Gradients (HOG). …”
  9. 9

    Comparison analysis of computation time. by Indhumathi S. (19173013)

    Published 2024
    “…The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. Finally, the plot of location feature distance illustrates that CBFD exhibits minimal distance compared to DITF and Histogram of Oriented Gradients (HOG). …”
  10. 10

    Process flow diagram of CBFD. by Indhumathi S. (19173013)

    Published 2024
    “…The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. Finally, the plot of location feature distance illustrates that CBFD exhibits minimal distance compared to DITF and Histogram of Oriented Gradients (HOG). …”
  11. 11

    Precision recall curve. by Indhumathi S. (19173013)

    Published 2024
    “…The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. Finally, the plot of location feature distance illustrates that CBFD exhibits minimal distance compared to DITF and Histogram of Oriented Gradients (HOG). …”
  12. 12

    Quadratic polynomial in 2D image plane. by Indhumathi S. (19173013)

    Published 2024
    “…The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. Finally, the plot of location feature distance illustrates that CBFD exhibits minimal distance compared to DITF and Histogram of Oriented Gradients (HOG). …”
  13. 13

    DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx by Massaine Bandeira e Sousa (7866242)

    Published 2024
    “…Fifteen roots from five plants per plot, featuring diameters ranging from 4 to 7 cm, were randomly chosen for cooking analysis and spectral data collection. …”
  14. 14

    Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx by Massaine Bandeira e Sousa (7866242)

    Published 2024
    “…Fifteen roots from five plants per plot, featuring diameters ranging from 4 to 7 cm, were randomly chosen for cooking analysis and spectral data collection. …”
  15. 15

    Flow diagram of the automatic animal detection and background reconstruction. by David Tadres (9120564)

    Published 2020
    “…(E) The threshold value is calculated based on the histogram: it is the mean of the image subtracted by 4 (optimal value defined by trial and error). …”