Showing 1 - 18 results of 18 for search '(( binary mask wolf optimization algorithm ) OR ( library based iterative optimization algorithm ))', query time: 0.52s Refine Results
  1. 1

    A Practical Algorithm to Solve the Near-Congruence Problem for Rigid Molecules and Clusters by José Manuel Vásquez-Pérez (12843737)

    Published 2023
    “…We present an improved algorithm to solve the near-congruence problem for rigid molecules and clusters based on the iterative application of assignment and alignment steps with biased Euclidean costs. …”
  2. 2
  3. 3

    RosettaAMRLD: A Reaction-Driven Approach for Structure-Based Drug Design from Combinatorial Libraries with Monte Carlo Metropolis Algorithms by Yidan Tang (6623693)

    Published 2025
    “…The Rosetta automated Monte Carlo reaction-based ligand design (RosettaAMRLD) integrates a Monte Carlo Metropolis (MCM) algorithm and reaction-driven molecule proposal to enhance structure-based <i>de novo</i> drug discovery. …”
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14

    iRaPCA and SOMoC: Development and Validation of Web Applications for New Approaches for the Clustering of Small Molecules by Denis N. Prada Gori (5798651)

    Published 2022
    “…Here, two open-source in-house methodologies for clustering of small molecules are presented: iterative Random subspace Principal Component Analysis clustering (iRaPCA), an iterative approach based on feature bagging, dimensionality reduction, and K-means optimization; and Silhouette Optimized Molecular Clustering (SOMoC), which combines molecular fingerprints with the Uniform Manifold Approximation and Projection (UMAP) and Gaussian Mixture Model algorithm (GMM). …”
  15. 15

    iRaPCA and SOMoC: Development and Validation of Web Applications for New Approaches for the Clustering of Small Molecules by Denis N. Prada Gori (5798651)

    Published 2022
    “…Here, two open-source in-house methodologies for clustering of small molecules are presented: iterative Random subspace Principal Component Analysis clustering (iRaPCA), an iterative approach based on feature bagging, dimensionality reduction, and K-means optimization; and Silhouette Optimized Molecular Clustering (SOMoC), which combines molecular fingerprints with the Uniform Manifold Approximation and Projection (UMAP) and Gaussian Mixture Model algorithm (GMM). …”
  16. 16

    iRaPCA and SOMoC: Development and Validation of Web Applications for New Approaches for the Clustering of Small Molecules by Denis N. Prada Gori (5798651)

    Published 2022
    “…Here, two open-source in-house methodologies for clustering of small molecules are presented: iterative Random subspace Principal Component Analysis clustering (iRaPCA), an iterative approach based on feature bagging, dimensionality reduction, and K-means optimization; and Silhouette Optimized Molecular Clustering (SOMoC), which combines molecular fingerprints with the Uniform Manifold Approximation and Projection (UMAP) and Gaussian Mixture Model algorithm (GMM). …”
  17. 17
  18. 18

    Supporting data for "clinical-oriented surgical planning based on finite element method and automate-generated surgical templates assisting the spinal surgery" by Tianchi Wu (11062323)

    Published 2024
    “…The offset algorithm was developed with normal vector of vertices and iterative bisection, outputting a solid layer of elements based on input triangle mesh and was validated against non-linear surface in vertebra body. …”