بدائل البحث:
features optimization » feature optimization (توسيع البحث), mixture optimization (توسيع البحث), resource optimization (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
measure features » texture features (توسيع البحث), measure factors (توسيع البحث), plaque features (توسيع البحث)
binary measure » binary mixture (توسيع البحث), primary measures (توسيع البحث)
binary same » binary image (توسيع البحث)
same wolf » same fold (توسيع البحث)
features optimization » feature optimization (توسيع البحث), mixture optimization (توسيع البحث), resource optimization (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
measure features » texture features (توسيع البحث), measure factors (توسيع البحث), plaque features (توسيع البحث)
binary measure » binary mixture (توسيع البحث), primary measures (توسيع البحث)
binary same » binary image (توسيع البحث)
same wolf » same fold (توسيع البحث)
-
1
Feature selection results.
منشور في 2025"…Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …"
-
2
Classification baseline performance.
منشور في 2025"…Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …"
-
3
ANOVA test result.
منشور في 2025"…Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …"
-
4
Summary of literature review.
منشور في 2025"…Further integrate the binary variant of OcOA (bOcOA) for effective feature selection, which reduces the average classification error to 0.4237 and increases CNN accuracy to 93.48%. …"
-
5
Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19.
منشور في 2021"…(D). The MCDM algorithm-Stage 4. Performance evaluation, this stage is to measure the performance of the binary classification by ACC, TPR, FPR and F1 score.…"
-
6
-
7
-
8
<i>hi</i>PRS algorithm process flow.
منشور في 2023"…<b>(C)</b> The whole training data is then scanned, searching for these sequences and deriving a re-encoded dataset where interaction terms are binary features (i.e., 1 if sequence <i>i</i> is observed in <i>j</i>-th patient genotype, 0 otherwise). …"
-
9
-
10
-
11
Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield...
منشور في 2022"…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …"
-
12
PathOlOgics_RBCs Python Scripts.zip
منشور في 2023"…</p><p dir="ltr">In terms of classification, a second algorithm was developed and employed to preliminary sort or group the individual cells (after excluding the overlapping cells manually) into different categories using five geometric measurements applied to the extracted contour from each binary image mask (see PathOlOgics_script_2; preliminary shape measurements). …"
-
13
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
منشور في 2025"…</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…"