بدائل البحث:
models optimization » model optimization (توسيع البحث), process optimization (توسيع البحث), wolf optimization (توسيع البحث)
access optimization » process optimization (توسيع البحث), stress optimization (توسيع البحث), process optimisation (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data access » data across (توسيع البحث), water access (توسيع البحث)
mlp models » mlp model (توسيع البحث), dl models (توسيع البحث), all models (توسيع البحث)
models optimization » model optimization (توسيع البحث), process optimization (توسيع البحث), wolf optimization (توسيع البحث)
access optimization » process optimization (توسيع البحث), stress optimization (توسيع البحث), process optimisation (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data access » data across (توسيع البحث), water access (توسيع البحث)
mlp models » mlp model (توسيع البحث), dl models (توسيع البحث), all models (توسيع البحث)
-
1
-
2
Prediction results of individual models.
منشور في 2025"…Out of all the models, LSTM produced the best results. The AD-PSO-Guided WOA algorithm was used to adjust the hyperparameters for the LSTM model. …"
-
3
Hyperparameters of the LSTM Model.
منشور في 2025"…Out of all the models, LSTM produced the best results. The AD-PSO-Guided WOA algorithm was used to adjust the hyperparameters for the LSTM model. …"
-
4
The AD-PSO-Guided WOA LSTM framework.
منشور في 2025"…Out of all the models, LSTM produced the best results. The AD-PSO-Guided WOA algorithm was used to adjust the hyperparameters for the LSTM model. …"
-
5
-
6
DataSheet_1_Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer.docx
منشور في 2021"…We applied several feature selection strategies including the least absolute shrinkage and selection operator (LASSO), and recursive feature elimination (RFE), the maximum relevance minimum redundancy (mRMR), Boruta and Pearson correlation analysis, to select the most optimal features. We then built 120 diagnostic models using distinct classification algorithms and feature sets divided by MRI sequences and selection strategies to predict molecular subtype and AR expression of breast cancer in the testing dataset of leave-one-out cross-validation (LOOCV). …"
-
7
Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield...
منشور في 2022"…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …"
-
8
Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx
منشور في 2025"…., blood lead and cadmium levels) were analyzed as features, with hearing loss status—defined as a pure-tone average threshold exceeding 25 dB HL across 500, 1,000, 2000, and 4,000 Hz in the better ear—serving as the binary outcome. Multiple machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, Logistic Regression, CatBoost, and MLP, were optimized and evaluated. …"
-
9
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
منشور في 2025"…Data sources included peer-reviewed publications and reputable open-access repositories such as the NanoPharos database. …"