بدائل البحث:
process optimization » model optimization (توسيع البحث)
design optimization » bayesian optimization (توسيع البحث)
leave process » peace process (توسيع البحث), release process (توسيع البحث), like process (توسيع البحث)
binary model » final model (توسيع البحث), injury model (توسيع البحث), tiny model (توسيع البحث)
model design » model designed (توسيع البحث), novel design (توسيع البحث), modular design (توسيع البحث)
binary leave » binary image (توسيع البحث), binary edge (توسيع البحث)
process optimization » model optimization (توسيع البحث)
design optimization » bayesian optimization (توسيع البحث)
leave process » peace process (توسيع البحث), release process (توسيع البحث), like process (توسيع البحث)
binary model » final model (توسيع البحث), injury model (توسيع البحث), tiny model (توسيع البحث)
model design » model designed (توسيع البحث), novel design (توسيع البحث), modular design (توسيع البحث)
binary leave » binary image (توسيع البحث), binary edge (توسيع البحث)
-
81
Predicting Thermal Decomposition Temperature of Binary Imidazolium Ionic Liquid Mixtures from Molecular Structures
منشور في 2021"…The subset of optimal descriptors was screened by combining the genetic algorithm with the multiple linear regression method. …"
-
82
Pseudo Code of RBMO.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
83
P-value on CEC-2017(Dim = 30).
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
84
Memory storage behavior.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
85
Elite search behavior.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
86
Description of the datasets.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
87
S and V shaped transfer functions.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
88
S- and V-Type transfer function diagrams.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
89
Collaborative hunting behavior.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
90
Friedman average rank sum test results.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
91
IRBMO vs. variant comparison adaptation data.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
92
Solubility Prediction of Different Forms of Pharmaceuticals in Single and Mixed Solvents Using Symmetric Electrolyte Nonrandom Two-Liquid Segment Activity Coefficient Model
منشور في 2019"…Moreover, a design of experiments is included in the methodology to generate and use experimental data appropriately for model parameter regression and model validation. …"
-
93
Seed mix selection model
منشور في 2022"…</p> <p> </p> <p>We applied the seed mix selection model using a binary genetic algorithm to select seed mixes (R package ‘GA’; Scrucca 2013; Scrucca 2017). …"
-
94
MCLP_quantum_annealer_V0.5
منشور في 2025"…Finally, for spatial relationship verification, a Spatial Coverage Consistency Checking Operator for MCLP Results (SCCCOMR) is designed. Theoretical and applied experiments are conducted using four solvers: QBSolv, D-Wave Hybrid binary quadratic model 2, D-Wave Advantage system 4.1, and Gurobi. …"
-
95
Summary of LITNET-2020 dataset.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
96
SHAP analysis for LITNET-2020 dataset.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
97
Comparison of intrusion detection systems.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
98
Parameter setting for CBOA and PSO.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
99
NSL-KDD dataset description.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
100
The architecture of LSTM cell.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"