بدائل البحث:
weight optimization » design optimization (توسيع البحث), joint optimization (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
binary model » final model (توسيع البحث), injury model (توسيع البحث), tiny model (توسيع البحث)
model weight » model weights (توسيع البحث), body weight (توسيع البحث), model which (توسيع البحث)
image model » damage model (توسيع البحث), primate model (توسيع البحث), climate model (توسيع البحث)
weight optimization » design optimization (توسيع البحث), joint optimization (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
binary model » final model (توسيع البحث), injury model (توسيع البحث), tiny model (توسيع البحث)
model weight » model weights (توسيع البحث), body weight (توسيع البحث), model which (توسيع البحث)
image model » damage model (توسيع البحث), primate model (توسيع البحث), climate model (توسيع البحث)
-
61
-
62
Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf
منشور في 2024"…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …"
-
63
Models and Dataset
منشور في 2025"…</p><p dir="ltr"><br></p><p dir="ltr"><b>TJO (Tom and Jerry Optimization):</b><br>TJO is a nature-inspired metaheuristic algorithm that models the predator-prey dynamics of the cartoon characters Tom (predator) and Jerry (prey). …"
-
64
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
منشور في 2024"…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …"
-
65
Thesis-RAMIS-Figs_Slides
منشور في 2024"…Importantly, this strategy locates samples adaptively on the transition between facies which improves the performance of conventional \emph{<i>MPS</i>} algorithms. In conclusion, this work shows that preferential sampling can contribute in \emph{<i>MPS</i>} even at very small sampling regimes and, as a corollary, demonstrates that prior models (obtained form a training image) can be used effectively not only to simulate non-sensed variables of the field, but to decide where to measure next.…"
-
66
DataSheet_1_Exploring deep learning radiomics for classifying osteoporotic vertebral fractures in X-ray images.docx
منشور في 2024"…Logistic regression emerged as the optimal machine learning algorithm for both DLR models. …"
-
67
Data Sheet 1_Detection of litchi fruit maturity states based on unmanned aerial vehicle remote sensing and improved YOLOv8 model.docx
منشور في 2025"…The weight, parameter count, and computational load of the model were reduced by 17.5%, 19.0%, and 9.9%, respectively. …"
-
68
-
69
Table_1_Machine Learning Techniques in Blood Pressure Management During the Acute Phase of Ischemic Stroke.DOCX
منشور في 2022"…Decision trees were constructed by a hierarchical binary recursive partitioning algorithm to predict the BP-lowering of 10–30% off the maximal value when antihypertensive treatment was given in patients with an extremely high BP (above 220/110 or 180/105 mmHg for patients receiving thrombolysis), according to the American Heart Association/American Stroke Association (AHA/ASA), the European Society of Cardiology, and the European Society of Hypertension (ESC/ESH) guidelines. …"
-
70
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
منشور في 2025"…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…"