Search alternatives:
based optimization » whale optimization (Expand Search)
yet optimization » art optimization (Expand Search), lead optimization (Expand Search), path optimization (Expand Search)
binary model » final model (Expand Search), injury model (Expand Search), tiny model (Expand Search)
model yet » model year (Expand Search), model beta (Expand Search), model dem (Expand Search)
based optimization » whale optimization (Expand Search)
yet optimization » art optimization (Expand Search), lead optimization (Expand Search), path optimization (Expand Search)
binary model » final model (Expand Search), injury model (Expand Search), tiny model (Expand Search)
model yet » model year (Expand Search), model beta (Expand Search), model dem (Expand Search)
-
21
-
22
A new fast filtering algorithm for a 3D point cloud based on RGB-D information
Published 2019“…Then, the optimal segmentation threshold of the V image that is calculated by using the Otsu algorithm is applied to segment the color mapping image into a binary image, which is used to extract the valid point cloud from the original point cloud with outliers. …”
-
23
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
Published 2019“…<div><p>An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current single-feature classification algorithms and simple multifeature fusion algorithms. …”
-
24
ROC curves for the test set of four models.
Published 2025“…<div><p>Background</p><p>The high prevalence of cognitive impairment (CI) in Chronic kidney disease (CKD) patients impacts their quality of life and prognosis, yet risk prediction models for CI in this population remain underexplored.…”
-
25
-
26
SHAP bar plot.
Published 2025“…<div><p>Background</p><p>The high prevalence of cognitive impairment (CI) in Chronic kidney disease (CKD) patients impacts their quality of life and prognosis, yet risk prediction models for CI in this population remain underexplored.…”
-
27
Sample screening flowchart.
Published 2025“…<div><p>Background</p><p>The high prevalence of cognitive impairment (CI) in Chronic kidney disease (CKD) patients impacts their quality of life and prognosis, yet risk prediction models for CI in this population remain underexplored.…”
-
28
Descriptive statistics for variables.
Published 2025“…<div><p>Background</p><p>The high prevalence of cognitive impairment (CI) in Chronic kidney disease (CKD) patients impacts their quality of life and prognosis, yet risk prediction models for CI in this population remain underexplored.…”
-
29
SHAP summary plot.
Published 2025“…<div><p>Background</p><p>The high prevalence of cognitive impairment (CI) in Chronic kidney disease (CKD) patients impacts their quality of life and prognosis, yet risk prediction models for CI in this population remain underexplored.…”
-
30
Display of the web prediction interface.
Published 2025“…<div><p>Background</p><p>The high prevalence of cognitive impairment (CI) in Chronic kidney disease (CKD) patients impacts their quality of life and prognosis, yet risk prediction models for CI in this population remain underexplored.…”
-
31
Testing results for classifying AD, MCI and NC.
Published 2024“…The study introduced a scheme for enhancing images to improve the quality of the datasets. Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …”
-
32
Summary of existing CNN models.
Published 2024“…The study introduced a scheme for enhancing images to improve the quality of the datasets. Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …”
-
33
Flowchart scheme of the ML-based model.
Published 2024“…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …”
-
34
-
35
-
36
Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf
Published 2020“…And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. …”
-
37
Generalized Tensor Decomposition With Features on Multiple Modes
Published 2021“…An efficient alternating optimization algorithm with provable spectral initialization is further developed. …”
-
38
-
39
Sample image for illustration.
Published 2024“…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
-
40
Quadratic polynomial in 2D image plane.
Published 2024“…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”