Showing 1 - 20 results of 31 for search '(( binary more global optimization algorithm ) OR ( binary image policy optimization algorithm ))', query time: 0.40s Refine Results
  1. 1
  2. 2
  3. 3

    Table_1_A scheduling route planning algorithm based on the dynamic genetic algorithm with ant colony binary iterative optimization for unmanned aerial vehicle spraying in multiple... by Yangyang Liu (807797)

    Published 2022
    “…Simulation tests reveal that the dynamic genetic algorithm with ant colony binary iterative optimization (DGA-ACBIO) proposed in this study shortens the optimal flight range by 715.8 m, 428.3 m, 589 m, and 287.6 m compared to the dynamic genetic algorithm, ant colony binary iterative algorithm, artificial fish swarm algorithm (AFSA) and particle swarm optimization (PSO), respectively, for multiple tea field scheduling route planning. …”
  4. 4
  5. 5
  6. 6

    The Pseudo-Code of the IRBMO Algorithm. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  7. 7

    IRBMO vs. meta-heuristic algorithms boxplot. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  8. 8

    IRBMO vs. feature selection algorithm boxplot. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  9. 9

    Hyperparameters of the LSTM Model. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…The AD-PSO-Guided WOA overcomes limitations of conventional optimization algorithms, such as premature convergence by balancing global search (exploration) and local refinement (exploitation). …”
  10. 10

    The AD-PSO-Guided WOA LSTM framework. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…The AD-PSO-Guided WOA overcomes limitations of conventional optimization algorithms, such as premature convergence by balancing global search (exploration) and local refinement (exploitation). …”
  11. 11

    Prediction results of individual models. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…The AD-PSO-Guided WOA overcomes limitations of conventional optimization algorithms, such as premature convergence by balancing global search (exploration) and local refinement (exploitation). …”
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16

    Pseudo Code of RBMO. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  17. 17

    P-value on CEC-2017(Dim = 30). by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  18. 18

    Memory storage behavior. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  19. 19

    Elite search behavior. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  20. 20

    Description of the datasets. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”