بدائل البحث:
weight optimization » design optimization (توسيع البحث), joint optimization (توسيع البحث)
policy optimization » topology optimization (توسيع البحث), wolf optimization (توسيع البحث), process optimization (توسيع البحث)
binary more » binary image (توسيع البحث)
more weight » core weight (توسيع البحث), model weight (توسيع البحث), score weights (توسيع البحث)
binary edge » binary image (توسيع البحث)
edge policy » sdgs policy (توسيع البحث), media policy (توسيع البحث), leave policy (توسيع البحث)
weight optimization » design optimization (توسيع البحث), joint optimization (توسيع البحث)
policy optimization » topology optimization (توسيع البحث), wolf optimization (توسيع البحث), process optimization (توسيع البحث)
binary more » binary image (توسيع البحث)
more weight » core weight (توسيع البحث), model weight (توسيع البحث), score weights (توسيع البحث)
binary edge » binary image (توسيع البحث)
edge policy » sdgs policy (توسيع البحث), media policy (توسيع البحث), leave policy (توسيع البحث)
-
1
MSE for ILSTM algorithm in binary classification.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
2
-
3
-
4
Comparisons of computation rate performance for different offloading algorithms.for N = 10, 20, 30.
منشور في 2025الموضوعات: -
5
Comparison of total time consumed for different offloading algorithms.for N = 10, 20, 30.
منشور في 2025الموضوعات: -
6
-
7
-
8
-
9
-
10
-
11
The evolution of the Wireless Power Transfer (WPT) time fraction β over simulation frames.
منشور في 2025الموضوعات: -
12
-
13
CDF of task latency, approximated as the inverse of the achieved computation rate.
منشور في 2025الموضوعات: -
14
-
15
-
16
-
17
-
18
-
19
Summary of LITNET-2020 dataset.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
20
SHAP analysis for LITNET-2020 dataset.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"