Search alternatives:
based optimization » whale optimization (Expand Search)
codon optimization » wolf optimization (Expand Search)
library based » laboratory based (Expand Search)
binary most » binary mask (Expand Search)
based codon » based color (Expand Search), based cohort (Expand Search), based action (Expand Search)
most based » costs based (Expand Search), test based (Expand Search), meat based (Expand Search)
based optimization » whale optimization (Expand Search)
codon optimization » wolf optimization (Expand Search)
library based » laboratory based (Expand Search)
binary most » binary mask (Expand Search)
based codon » based color (Expand Search), based cohort (Expand Search), based action (Expand Search)
most based » costs based (Expand Search), test based (Expand Search), meat based (Expand Search)
-
1
Parameter settings of the comparison algorithms.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
2
Datasets and their properties.
Published 2023“…In addition, we designed nested transfer (NT) functions and investigated the influence of the function on the level-1 optimizer. The binary Ebola optimization search algorithm (BEOSA) is applied for the level-1 mutation, while the simulated annealing (SA) and firefly (FFA) algorithms are investigated for the level-2 optimizer. …”
-
3
Parameter settings.
Published 2023“…In addition, we designed nested transfer (NT) functions and investigated the influence of the function on the level-1 optimizer. The binary Ebola optimization search algorithm (BEOSA) is applied for the level-1 mutation, while the simulated annealing (SA) and firefly (FFA) algorithms are investigated for the level-2 optimizer. …”
-
4
Multicategory Angle-Based Learning for Estimating Optimal Dynamic Treatment Regimes With Censored Data
Published 2021“…In this article, we develop a novel angle-based approach to search the optimal DTR under a multicategory treatment framework for survival data. …”
-
5
SHAP bar plot.
Published 2025“…According to the SHAP analysis of the optimal model, the most influential predictors are age, education level, and hemoglobin concentration.…”
-
6
Sample screening flowchart.
Published 2025“…According to the SHAP analysis of the optimal model, the most influential predictors are age, education level, and hemoglobin concentration.…”
-
7
Descriptive statistics for variables.
Published 2025“…According to the SHAP analysis of the optimal model, the most influential predictors are age, education level, and hemoglobin concentration.…”
-
8
SHAP summary plot.
Published 2025“…According to the SHAP analysis of the optimal model, the most influential predictors are age, education level, and hemoglobin concentration.…”
-
9
ROC curves for the test set of four models.
Published 2025“…According to the SHAP analysis of the optimal model, the most influential predictors are age, education level, and hemoglobin concentration.…”
-
10
Display of the web prediction interface.
Published 2025“…According to the SHAP analysis of the optimal model, the most influential predictors are age, education level, and hemoglobin concentration.…”
-
11
Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19.
Published 2021“…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …”
-
12
Comparison in terms of the sensitivity.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
13
Parameter sensitivity of BIMGO.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
14
Details of the medical datasets.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
15
The flowchart of IMGO.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
16
Comparison in terms of the selected features.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
17
Iterative chart of control factor.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
18
Details of 23 basic benchmark functions.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
19
Related researches.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
20
S1 Dataset -
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”