Search alternatives:
object optimization » objective optimization (Expand Search), objectives optimization (Expand Search), robust optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
binary most » binary mask (Expand Search)
most model » host model (Expand Search), best model (Expand Search), test model (Expand Search)
object optimization » objective optimization (Expand Search), objectives optimization (Expand Search), robust optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
binary most » binary mask (Expand Search)
most model » host model (Expand Search), best model (Expand Search), test model (Expand Search)
-
1
-
2
-
3
ROC curves for the test set of four models.
Published 2025“…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
4
-
5
SHAP bar plot.
Published 2025“…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
6
Sample screening flowchart.
Published 2025“…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
7
Descriptive statistics for variables.
Published 2025“…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
8
SHAP summary plot.
Published 2025“…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
9
Display of the web prediction interface.
Published 2025“…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
10
-
11
Hyperparameters of the LSTM Model.
Published 2025“…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …”
-
12
Prediction results of individual models.
Published 2025“…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …”
-
13
Proposed Algorithm.
Published 2025“…The objective is to optimize binary offloading decisions under dynamic wireless channel conditions and energy harvesting constraints. …”
-
14
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
Published 2025“…The binary GWO algorithm identifies the most relevant features from </p><p dir="ltr">dermatological images, eliminating redundancy and reducing the computational burden. …”
-
15
Comparisons between ADAM and NADAM optimizers.
Published 2025“…The objective is to optimize binary offloading decisions under dynamic wireless channel conditions and energy harvesting constraints. …”
-
16
Flow diagram of the proposed model.
Published 2025“…<div><p>Machine learning models are increasingly applied to assisted reproductive technologies (ART), yet most studies rely on conventional algorithms with limited optimization. …”
-
17
The AD-PSO-Guided WOA LSTM framework.
Published 2025“…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …”
-
18
-
19
Data_Sheet_1_Pneumonia detection by binary classification: classical, quantum, and hybrid approaches for support vector machine (SVM).pdf
Published 2024“…A support vector machine (SVM) is attractive because binary classification can be represented as an optimization problem, in particular as a Quadratic Unconstrained Binary Optimization (QUBO) model, which, in turn, maps naturally to an Ising model, thereby making annealing—classical, quantum, and hybrid—an attractive approach to explore. …”
-
20