Search alternatives:
selective optimization » objective optimization (Expand Search), selective metallization (Expand Search), structure optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
based selective » based selection (Expand Search), based perspective (Expand Search), based predictive (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
binary most » binary mask (Expand Search)
most model » host model (Expand Search), best model (Expand Search), test model (Expand Search)
selective optimization » objective optimization (Expand Search), selective metallization (Expand Search), structure optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
based selective » based selection (Expand Search), based perspective (Expand Search), based predictive (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
binary most » binary mask (Expand Search)
most model » host model (Expand Search), best model (Expand Search), test model (Expand Search)
-
41
-
42
-
43
-
44
-
45
-
46
-
47
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
48
Hyperparameters of the LSTM Model.
Published 2025“…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …”
-
49
Parameter settings of the comparison algorithms.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
50
-
51
-
52
-
53
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
54
Prediction results of individual models.
Published 2025“…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …”
-
55
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
Published 2025“…The binary GWO algorithm identifies the most relevant features from </p><p dir="ltr">dermatological images, eliminating redundancy and reducing the computational burden. …”
-
56
Dataset 1: Zip file containing the figures of the presented methods and results in jpeg files
Published 2025“…<p dir="ltr">Figures represented here illustrates the <b>metaheuristic-based band selection framework</b> for hyperspectral image classification using <b>Binary Jaya Algorithm enhanced with a mutation operator</b> to improve population diversity and avoid premature convergence. …”
-
57
-
58
Results of KNN.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
59
Comparison of key techniques in their literature.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
60
Ensemble model architecture.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”