بدائل البحث:
process optimization » model optimization (توسيع البحث)
care optimization » art optimization (توسيع البحث), carbon optimization (توسيع البحث), swarm optimization (توسيع البحث)
most process » test process (توسيع البحث), pot process (توسيع البحث), met process (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary most » binary mask (توسيع البحث)
based care » based case (توسيع البحث), aged care (توسيع البحث), based cancer (توسيع البحث)
process optimization » model optimization (توسيع البحث)
care optimization » art optimization (توسيع البحث), carbon optimization (توسيع البحث), swarm optimization (توسيع البحث)
most process » test process (توسيع البحث), pot process (توسيع البحث), met process (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary most » binary mask (توسيع البحث)
based care » based case (توسيع البحث), aged care (توسيع البحث), based cancer (توسيع البحث)
-
1
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
منشور في 2025"…This strategy </p><p dir="ltr">not only improves detection efficiency and accuracy but also supports early diagnosis and treatment planning, </p><p dir="ltr">leading to better patient outcomes. By leveraging the binary GWO algorithm to optimize the feature selection </p><p dir="ltr">process and CNNs for image classification, the proposed approach reduces computational costs while increasing </p><p dir="ltr">classification accuracy. …"
-
2
Datasets and their properties.
منشور في 2023"…In addition, we designed nested transfer (NT) functions and investigated the influence of the function on the level-1 optimizer. The binary Ebola optimization search algorithm (BEOSA) is applied for the level-1 mutation, while the simulated annealing (SA) and firefly (FFA) algorithms are investigated for the level-2 optimizer. …"
-
3
Parameter settings.
منشور في 2023"…In addition, we designed nested transfer (NT) functions and investigated the influence of the function on the level-1 optimizer. The binary Ebola optimization search algorithm (BEOSA) is applied for the level-1 mutation, while the simulated annealing (SA) and firefly (FFA) algorithms are investigated for the level-2 optimizer. …"
-
4
-
5
Hyperparameters of the LSTM Model.
منشور في 2025"…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …"
-
6
The AD-PSO-Guided WOA LSTM framework.
منشور في 2025"…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …"
-
7
Prediction results of individual models.
منشور في 2025"…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …"
-
8
-
9
Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19.
منشور في 2021"…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …"
-
10
Triplet Matching for Estimating Causal Effects With Three Treatment Arms: A Comparative Study of Mortality by Trauma Center Level
منشور في 2021"…Our algorithm outperforms the nearest neighbor algorithm and is shown to produce matched samples with total distance no larger than twice the optimal distance. …"
-
11
-
12
-
13
-
14
-
15
GSE96058 information.
منشور في 2024"…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …"
-
16
The performance of classifiers.
منشور في 2024"…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …"
-
17
-
18
-
19
PathOlOgics_RBCs Python Scripts.zip
منشور في 2023"…This process generated a ground-truth binary semantic segmentation mask and determined the bounding box coordinates (XYWH) for each cell. …"
-
20
Table_1_iRNA5hmC: The First Predictor to Identify RNA 5-Hydroxymethylcytosine Modifications Using Machine Learning.docx
منشور في 2020"…Our feature analysis results showed that feature optimization can help to capture the most discriminative features. …"