Search alternatives:
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
most process » test process (Expand Search), pot process (Expand Search), met process (Expand Search)
binary most » binary mask (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data model » data models (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
most process » test process (Expand Search), pot process (Expand Search), met process (Expand Search)
binary most » binary mask (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data model » data models (Expand Search)
-
121
-
122
-
123
-
124
-
125
-
126
-
127
-
128
-
129
-
130
-
131
-
132
Event-driven data flow processing.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
133
Presentation_1_Modified GAN Augmentation Algorithms for the MRI-Classification of Myocardial Scar Tissue in Ischemic Cardiomyopathy.PPTX
Published 2021“…Currently, there are no optimized deep-learning algorithms for the automated classification of scarred vs. normal myocardium. …”
-
134
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
-
135
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
Published 2019“…The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. …”
-
136
-
137
Flowchart scheme of the ML-based model.
Published 2024“…<b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …”
-
138
Thesis-RAMIS-Figs_Slides
Published 2024“…In addition, the practical benefits for \emph{<i>MPS</i>} in the context of simulating channelized facies models is demonstrated using synthetic data and real geological facies. …”
-
139
Confusion matrix.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
140
Parameter settings.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”