Showing 1 - 20 results of 39 for search '(( binary most process optimization algorithm ) OR ( primary data where optimization algorithm ))', query time: 0.62s Refine Results
  1. 1

    Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm by Hussein Ali Bardan (21976208)

    Published 2025
    “…This strategy </p><p dir="ltr">not only improves detection efficiency and accuracy but also supports early diagnosis and treatment planning, </p><p dir="ltr">leading to better patient outcomes. By leveraging the binary GWO algorithm to optimize the feature selection </p><p dir="ltr">process and CNNs for image classification, the proposed approach reduces computational costs while increasing </p><p dir="ltr">classification accuracy. …”
  2. 2

    Datasets and their properties. by Olaide N. Oyelade (14047002)

    Published 2023
    “…In addition, we designed nested transfer (NT) functions and investigated the influence of the function on the level-1 optimizer. The binary Ebola optimization search algorithm (BEOSA) is applied for the level-1 mutation, while the simulated annealing (SA) and firefly (FFA) algorithms are investigated for the level-2 optimizer. …”
  3. 3

    Parameter settings. by Olaide N. Oyelade (14047002)

    Published 2023
    “…In addition, we designed nested transfer (NT) functions and investigated the influence of the function on the level-1 optimizer. The binary Ebola optimization search algorithm (BEOSA) is applied for the level-1 mutation, while the simulated annealing (SA) and firefly (FFA) algorithms are investigated for the level-2 optimizer. …”
  4. 4

    Hyperparameters of the LSTM Model. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …”
  5. 5

    The AD-PSO-Guided WOA LSTM framework. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …”
  6. 6

    Prediction results of individual models. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …”
  7. 7

    Iteration curve of the optimization process. by Meijun Shang (22806461)

    Published 2025
    “…The load-bearing mechanism of the proposed steel platform was analyzed theoretically, and finite element analysis (FEA) was employed to evaluate the stresses and deflections of key members. A particle swarm optimization (PSO) algorithm was integrated with the FEA model to optimize the cross-sectional dimensions of the primary beams, secondary beams, and foundation boxes, achieving a balance between load-bearing capacity and cost efficiency. …”
  8. 8
  9. 9
  10. 10
  11. 11

    Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19. by Jiaqing Luo (10975030)

    Published 2021
    “…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …”
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17

    A portfolio selection model based on the knapsack problem under uncertainty by Fereshteh Vaezi (6655028)

    Published 2019
    “…The resulted model is converted into a parametric linear programming model in which the decision maker is able to determine the optimism threshold. Finally, a discrete firefly algorithm is designed to find the near optional solutions in large dimensions. …”
  18. 18
  19. 19

    Heavy-load transfer steel platform. by Meijun Shang (22806461)

    Published 2025
    “…The load-bearing mechanism of the proposed steel platform was analyzed theoretically, and finite element analysis (FEA) was employed to evaluate the stresses and deflections of key members. A particle swarm optimization (PSO) algorithm was integrated with the FEA model to optimize the cross-sectional dimensions of the primary beams, secondary beams, and foundation boxes, achieving a balance between load-bearing capacity and cost efficiency. …”
  20. 20

    Traditional scaffolding reinforcement system. by Meijun Shang (22806461)

    Published 2025
    “…The load-bearing mechanism of the proposed steel platform was analyzed theoretically, and finite element analysis (FEA) was employed to evaluate the stresses and deflections of key members. A particle swarm optimization (PSO) algorithm was integrated with the FEA model to optimize the cross-sectional dimensions of the primary beams, secondary beams, and foundation boxes, achieving a balance between load-bearing capacity and cost efficiency. …”