Search alternatives:
process optimization » model optimization (Expand Search)
robust optimization » robust estimation (Expand Search), joint optimization (Expand Search)
binary most » binary mask (Expand Search)
b process » _ process (Expand Search), a process (Expand Search)
binary b » binary _ (Expand Search)
process optimization » model optimization (Expand Search)
robust optimization » robust estimation (Expand Search), joint optimization (Expand Search)
binary most » binary mask (Expand Search)
b process » _ process (Expand Search), a process (Expand Search)
binary b » binary _ (Expand Search)
-
41
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
-
42
-
43
-
44
-
45
PathOlOgics_RBCs Python Scripts.zip
Published 2023“…This process generated a ground-truth binary semantic segmentation mask and determined the bounding box coordinates (XYWH) for each cell. …”
-
46
Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat.
Published 2025“…<br>The consistency of the results across different kernels demonstrates that the information contained in the habitat, by itself, leads to a very simple optimal decision rule (mostly the prediction of the most frequent class per habitat), which cannot be improved solely by model adjustments. …”
-
47
DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Despite the increased complexity associated with binary classification, it remained more efficient, offering higher classification accuracy for samples and facilitating the selection of the most relevant time or variables, such as cooking time ≤ 30 minutes. …”
-
48
Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Despite the increased complexity associated with binary classification, it remained more efficient, offering higher classification accuracy for samples and facilitating the selection of the most relevant time or variables, such as cooking time ≤ 30 minutes. …”
-
49
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…”