Search alternatives:
across optimization » cost optimization (Expand Search), stress optimization (Expand Search), process optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
mri based » i based (Expand Search)
across optimization » cost optimization (Expand Search), stress optimization (Expand Search), process optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
mri based » i based (Expand Search)
-
21
DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Cooking data were classified into binary and multiclass variables (CT4C and CT6C). …”
-
22
DataSheet_1_Exploring deep learning radiomics for classifying osteoporotic vertebral fractures in X-ray images.docx
Published 2024“…Logistic regression emerged as the optimal machine learning algorithm for both DLR models. …”
-
23
Variable Selection with Multiply-Imputed Datasets: Choosing Between Stacked and Grouped Methods
Published 2022“…Building on existing work, we (i) derive and implement efficient cyclic coordinate descent and majorization-minimization optimization algorithms for continuous and binary outcome data, (ii) incorporate adaptive shrinkage penalties, (iii) compare these methods through simulation, and (iv) develop an R package <i>miselect</i>. …”
-
24
Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Cooking data were classified into binary and multiclass variables (CT4C and CT6C). …”
-
25
Image 1_A multimodal AI-driven framework for cardiovascular screening and risk assessment in diverse athletic populations: innovations in sports cardiology.png
Published 2025“…</p>Results and Discussion<p>Experimental evaluation across varied athlete cohorts demonstrates superior performance in risk stratification accuracy, diagnostic plausibility, and model transparency compared to traditional screening algorithms. …”
-
26
Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx
Published 2025“…Demographic, clinical, and heavy metal biomarker data (e.g., blood lead and cadmium levels) were analyzed as features, with hearing loss status—defined as a pure-tone average threshold exceeding 25 dB HL across 500, 1,000, 2000, and 4,000 Hz in the better ear—serving as the binary outcome. …”
-
27
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…The dataset also enables parameter space mapping, allowing the generation of 2D/3D response surfaces showing toxicity trends across varying core sizes and dosages.</p><p dir="ltr">This curated dataset addresses several limitations of existing toxicological datasets by enhancing feature diversity, standardization, and data quality control. …”