بدائل البحث:
based optimization » whale optimization (توسيع البحث)
3d optimization » d optimization (توسيع البحث), led optimization (توسيع البحث), _ optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
named based » game based (توسيع البحث), ranked based (توسيع البحث), varied based (توسيع البحث)
based 3d » based _ (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
3d optimization » d optimization (توسيع البحث), led optimization (توسيع البحث), _ optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
named based » game based (توسيع البحث), ranked based (توسيع البحث), varied based (توسيع البحث)
based 3d » based _ (توسيع البحث)
-
1
-
2
-
3
ROC curve for binary classification.
منشور في 2024"…Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …"
-
4
Confusion matrix for binary classification.
منشور في 2024"…Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …"
-
5
-
6
Testing results for classifying AD, MCI and NC.
منشور في 2024"…Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …"
-
7
Summary of existing CNN models.
منشور في 2024"…Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …"
-
8
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
منشور في 2024"…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…"
-
9
Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf
منشور في 2020"…And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. …"
-
10
Table_1_Computational prediction of promotors in Agrobacterium tumefaciens strain C58 by using the machine learning technique.DOCX
منشور في 2023"…The obtained features were optimized by using correlation and the mRMR-based algorithm. …"
-
11
Psoas muscle CT radiomics-based machine learning models to predict response to infliximab in patients with Crohn’s disease
منشور في 2025"…<i>Z</i> score standardization and independent sample <i>t</i> test were applied to identify optimal predictive features, which were then utilized in seven ML algorithms for training and validation. …"
-
12
Processed dataset to train and test the WGAN-GP_IMOA_DA_Ensemble model
منشور في 2025"…To overcome these limitations, we propose a hybrid framework named WGAN-GP_IMOA_DA_Ensemble. This framework integrates a novel biologically inspired optimization algorithm, the Indian Millipede Optimization Algorithm (IMOA), for effective feature selection. …"
-
13
Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield...
منشور في 2022"…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …"
-
14
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
منشور في 2025"…</p><p dir="ltr">These biological metrics were used to define a binary toxicity label: entries were classified as toxic (1) or non-toxic (0) based on thresholds from standardized guidelines (e.g., ISO 10993-5:2009) and literature consensus. …"