Search alternatives:
feature optimization » resource optimization (Expand Search), feature elimination (Expand Search), structure optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
nine feature » nine features (Expand Search), line feature (Expand Search), line features (Expand Search)
image model » damage model (Expand Search), primate model (Expand Search), climate model (Expand Search)
feature optimization » resource optimization (Expand Search), feature elimination (Expand Search), structure optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
nine feature » nine features (Expand Search), line feature (Expand Search), line features (Expand Search)
image model » damage model (Expand Search), primate model (Expand Search), climate model (Expand Search)
-
1
-
2
-
3
-
4
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
5
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
6
-
7
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
8
ROC curve for binary classification.
Published 2024“…To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. …”
-
9
Confusion matrix for binary classification.
Published 2024“…To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. …”
-
10
A* Path-Finding Algorithm to Determine Cell Connections
Published 2025“…Future work aims to generalize this algorithm for broader biological applications by training additional Cellpose models and adapting the A* framework.…”
-
11
-
12
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
Published 2025“…In this work, we propose a novel framework that integrates </p><p dir="ltr">Convolutional Neural Networks (CNNs) for image classification and a binary Grey Wolf Optimization (GWO) </p><p dir="ltr">algorithm for feature selection. …”
-
13
-
14
Summary of existing CNN models.
Published 2024“…To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. …”
-
15
-
16
Pseudo Code of RBMO.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
17
P-value on CEC-2017(Dim = 30).
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
18
Memory storage behavior.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
19
Elite search behavior.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
20
Description of the datasets.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”