Showing 1 - 20 results of 21 for search '(( binary noise based optimization algorithm ) OR ( binary sample design optimization algorithm ))', query time: 0.65s Refine Results
  1. 1
  2. 2

    ROC curve for binary classification. by Nicodemus Songose Awarayi (18414494)

    Published 2024
    “…Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …”
  3. 3

    Confusion matrix for binary classification. by Nicodemus Songose Awarayi (18414494)

    Published 2024
    “…Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …”
  4. 4

    Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things by Ashok Kumar K (21441108)

    Published 2025
    “…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”
  5. 5

    A* Path-Finding Algorithm to Determine Cell Connections by Max Weng (22327159)

    Published 2025
    “…Pixel paths were classified using a z-score brightness threshold of 1.21, optimized for noise reduction and accuracy. The A* algorithm then evaluated connectivity by minimizing Euclidean distance and heuristic cost between cells. …”
  6. 6

    Testing results for classifying AD, MCI and NC. by Nicodemus Songose Awarayi (18414494)

    Published 2024
    “…Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …”
  7. 7

    Summary of existing CNN models. by Nicodemus Songose Awarayi (18414494)

    Published 2024
    “…Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …”
  8. 8
  9. 9
  10. 10

    A new fast filtering algorithm for a 3D point cloud based on RGB-D information by Chaochuan Jia (7256237)

    Published 2019
    “…This method aligns the color image to the depth image, and the color mapping image is converted to an HSV image. Then, the optimal segmentation threshold of the V image that is calculated by using the Otsu algorithm is applied to segment the color mapping image into a binary image, which is used to extract the valid point cloud from the original point cloud with outliers. …”
  11. 11

    Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19. by Jiaqing Luo (10975030)

    Published 2021
    “…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …”
  12. 12

    Triplet Matching for Estimating Causal Effects With Three Treatment Arms: A Comparative Study of Mortality by Trauma Center Level by Giovanni Nattino (561797)

    Published 2021
    “…We fill the gap by developing an iterative matching algorithm for the three-group setting. Our algorithm outperforms the nearest neighbor algorithm and is shown to produce matched samples with total distance no larger than twice the optimal distance. …”
  13. 13

    Thesis-RAMIS-Figs_Slides by Felipe Santibañez-Leal (10967991)

    Published 2024
    “…<br><br>Finally, although the developed concepts, ideas and algorithms have been developed for inverse problems in geostatistics, the results are applicable to a wide range of disciplines where similar sampling problems need to be faced, included but not limited to design of communication networks, optimal integration and communication of swarms of robots and drones, remote sensing.…”
  14. 14

    MCLP_quantum_annealer_V0.5 by Anonymous Anonymous (4854526)

    Published 2025
    “…This paper first proposes the QUBO-MCLP algorithm workflow and designs the Transformation Operator for Inequality Constraints Considering the Capacity of Accessible Providers (TOICCAP), which accounts for the scale of accessible supply points. …”
  15. 15

    Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx by Veera Narayana Balabathina (22518524)

    Published 2025
    “…Dimensionality-reduction techniques (Principal Component Analysis—PCA and Minimum Noise Fraction—MNF) and band-selection strategies based on the Average Pairwise Absolute Difference (APAD) metric and species-specific band-ratio indices were implemented to mitigate spectral redundancy. …”
  16. 16

    Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf by Cecilia Lindig-León (7889777)

    Published 2020
    “…And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. …”
  17. 17
  18. 18

    Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP by Xiaoyuan Wang (492534)

    Published 2022
    “…The specific work is as follows: (1) design simulated driving experiment and real driving experiment, determine the fatigue state of drivers according to the binary Karolinska Sleepiness Scale (KSS), and establish the fatigue driving sample database. (2) Improved Multi-Task Cascaded Convolutional Networks (MTCNN) and applied to face detection. …”
  19. 19

    Steps in the extraction of 14 coordinates from the CT slices for the curved MPR. by Linus Woitke (22783534)

    Published 2025
    “…Protruding paths are then eliminated using graph-based optimization algorithms, as demonstrated in f). …”
  20. 20

    Flow diagram of the automatic animal detection and background reconstruction. by David Tadres (9120564)

    Published 2020
    “…(E) The threshold value is calculated based on the histogram: it is the mean of the image subtracted by 4 (optimal value defined by trial and error). …”