بدائل البحث:
selection algorithm » detection algorithm (توسيع البحث), detection algorithms (توسيع البحث)
codon optimization » wolf optimization (توسيع البحث)
example selection » sample selection (توسيع البحث), frame selection (توسيع البحث), enabled selection (توسيع البحث)
one example » one sample (توسيع البحث)
binary wave » binary image (توسيع البحث)
selection algorithm » detection algorithm (توسيع البحث), detection algorithms (توسيع البحث)
codon optimization » wolf optimization (توسيع البحث)
example selection » sample selection (توسيع البحث), frame selection (توسيع البحث), enabled selection (توسيع البحث)
one example » one sample (توسيع البحث)
binary wave » binary image (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
<i>hi</i>PRS algorithm process flow.
منشور في 2023"…<b>(C)</b> The whole training data is then scanned, searching for these sequences and deriving a re-encoded dataset where interaction terms are binary features (i.e., 1 if sequence <i>i</i> is observed in <i>j</i>-th patient genotype, 0 otherwise). …"
-
6
-
7
-
8
-
9
-
10
-
11
Data generation process.
منشور في 2024"…We evolve it on a perfect binary tree over a fixed number <i>n</i> of “generations” (i.e., tree levels, corresponding to branching events), here <i>n</i> = 2 generations. …"
-
12
Table_1_A toolbox for decoding BCI commands based on event-related potentials.XLSX
منشور في 2024"…Error-related potentials and the N2pc signal are further examples of ERPs used for BCI control. One challenge in decoding brain activity from the electroencephalogram (EEG) is the selection of the most suitable channels and appropriate features for a particular classification approach. …"
-
13
Table_1_A toolbox for decoding BCI commands based on event-related potentials.XLSX
منشور في 2024"…Error-related potentials and the N2pc signal are further examples of ERPs used for BCI control. One challenge in decoding brain activity from the electroencephalogram (EEG) is the selection of the most suitable channels and appropriate features for a particular classification approach. …"
-
14
Gene Scores - Adjusted - Regular
منشور في 2022"…<div>Gene scores for selected combinations of phenotypes and</div><div>SNV-to-gene mappings as calculated using genuine summary </div><div>statistics with MAGMA's (v1.08) SNP-Wise Mean algorithm, after adjustment for residual effects of known confounders.…"
-
15
Gene Scores - Unadjusted - Regular
منشور في 2022"…<div>Gene scores for selected combinations of phenotypes and</div><div>SNV-to-gene mappings as calculated using genuine summary </div><div>statistics with MAGMA's (v1.08) SNP-Wise Mean algorithm. …"
-
16
WEISS Catheter Segmentation in Fluoroscopy Dataset
منشور في 2023"…</p><p dir="ltr">The annotations are provided in the files: “Phantom_label.hdf5”, “T1T2_label.hdf5” and “T3-T6_label.hdf5”. All annotations consist of full-scale (256x256 px) binary masks where background pixels have a “0” value, while a value equal to “1” denotes the catheter pixels.…"
-
17
Dataset.csv
منشور في 2023"…This process is called one-hot encoding and involves creating a new binary attribute. …"
-
18
GridScopeRodents: High-Resolution Global Typical Rodents Distribution Projections from 2021 to 2100 under Diverse SSP-RCP Scenarios
منشور في 2025"…For example, <i>Akodon_ACCESS-CM2_2021–2040_ssp126_avg.tif</i> represents the average projected occurrence probability for <i>Akodon</i> under the SSP1–RCP2.6 scenario and the ACCESS-CM2 global climate model during 2021–2040 over 25 replicate runs. …"
-
19
Segmentation, trace denoising and spike extraction framework.
منشور في 2021"…(B) Algorithm for fluorescence trace denoising and spike extraction. ①-② Load and high-pass filter the signal in one context region of the movie. …"
-
20
Pan-cancer machine learning predictions of MEKi response.
منشور في 2021"…<p><b>(A)</b> Schematic of an example of training-prediction-assessment workflow, depicting the generation of a prediction model (yellow, <i>f</i><sub><i>K1</i></sub>) that considers MEKi PD-901 response data from the Klijn 2015 dataset (<i>y</i><sub><i>K1</i></sub>, light red) and DNA and RNA features (<i>x</i><sub><i>K</i></sub>). …"