Search alternatives:
optimisation algorithm » optimization algorithms (Expand Search), maximization algorithm (Expand Search), identification algorithm (Expand Search)
process optimisation » process optimization (Expand Search), robust optimisation (Expand Search), process simulation (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
pairs process » apar process (Expand Search), amos process (Expand Search), gans process (Expand Search)
binary 3d » binary _ (Expand Search), binary b (Expand Search)
optimisation algorithm » optimization algorithms (Expand Search), maximization algorithm (Expand Search), identification algorithm (Expand Search)
process optimisation » process optimization (Expand Search), robust optimisation (Expand Search), process simulation (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
pairs process » apar process (Expand Search), amos process (Expand Search), gans process (Expand Search)
binary 3d » binary _ (Expand Search), binary b (Expand Search)
-
1
-
2
Scheduling method for pairing night-shift and morning-shift duties on metro lines with complex structure
Published 2022“…To improve the rest time of crews, this paper proposes a binary programming model to optimise the NMDPP. Moreover, a hybrid algorithm combining General Variable Neighbourhood Search (GVNS) with an Assignment Algorithm is designed to find high-quality solutions for this problem. …”
-
3
Psoas muscle CT radiomics-based machine learning models to predict response to infliximab in patients with Crohn’s disease
Published 2025“…<i>Z</i> score standardization and independent sample <i>t</i> test were applied to identify optimal predictive features, which were then utilized in seven ML algorithms for training and validation. …”
-
4
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…”