بدائل البحث:
process optimization » model optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
pairs process » apar process (توسيع البحث), amos process (توسيع البحث), gans process (توسيع البحث)
binary d » binary _ (توسيع البحث), binary b (توسيع البحث)
d based » _ based (توسيع البحث), 1 based (توسيع البحث), 2 based (توسيع البحث)
process optimization » model optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
pairs process » apar process (توسيع البحث), amos process (توسيع البحث), gans process (توسيع البحث)
binary d » binary _ (توسيع البحث), binary b (توسيع البحث)
d based » _ based (توسيع البحث), 1 based (توسيع البحث), 2 based (توسيع البحث)
-
1
<i>hi</i>PRS algorithm process flow.
منشور في 2023"…From this dataset we can compute the MI between each interaction and the outcome and <b>(D)</b> obtain a ranked list (<i>I</i><sub><i>δ</i></sub>) based on this metric. …"
-
2
-
3
-
4
-
5
A new fast filtering algorithm for a 3D point cloud based on RGB-D information
منشور في 2019"…This method aligns the color image to the depth image, and the color mapping image is converted to an HSV image. Then, the optimal segmentation threshold of the V image that is calculated by using the Otsu algorithm is applied to segment the color mapping image into a binary image, which is used to extract the valid point cloud from the original point cloud with outliers. …"
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19.
منشور في 2021"…EVAL1: The correlation between input features <i>x</i>∈<i>X</i> and output features y∈<i>Y</i>, <i>R</i>[<i>x,y</i>] or <i>R</i>[<i>y,x</i>]; EVAL2: The correlation between input features <i>x</i>∈<i>X</i> and labeled features v∈<i>L</i>, <i>R</i>[<i>x,v</i>] or <i>R</i>[<i>v,x</i>]; Subset: The optimal input feature subset. (D). The MCDM algorithm-Stage 4. …"
-
14
-
15
-
16
Flowchart scheme of the ML-based model.
منشور في 2024"…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …"
-
17
-
18
Bayesian sequential design for sensitivity experiments with hybrid responses
منشور في 2023"…To deal with the problem of complex computation involved in searching for optimal designs, fast algorithms are presented using two strategies to approximate the optimal criterion, denoted as SI-optimal design and Bayesian D-optimal design, respectively. …"
-
19
-
20