بدائل البحث:
based optimization » whale optimization (توسيع البحث)
task optimization » phase optimization (توسيع البحث), path optimization (توسيع البحث), dose optimization (توسيع البحث)
binary paper » binary pairs (توسيع البحث)
paper based » cancer based (توسيع البحث)
binary back » binary mask (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
task optimization » phase optimization (توسيع البحث), path optimization (توسيع البحث), dose optimization (توسيع البحث)
binary paper » binary pairs (توسيع البحث)
paper based » cancer based (توسيع البحث)
binary back » binary mask (توسيع البحث)
-
21
Elite search behavior.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
22
Description of the datasets.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
23
S and V shaped transfer functions.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
24
S- and V-Type transfer function diagrams.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
25
Collaborative hunting behavior.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
26
Friedman average rank sum test results.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
27
IRBMO vs. variant comparison adaptation data.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
28
A new fast filtering algorithm for a 3D point cloud based on RGB-D information
منشور في 2019"…This method aligns the color image to the depth image, and the color mapping image is converted to an HSV image. Then, the optimal segmentation threshold of the V image that is calculated by using the Otsu algorithm is applied to segment the color mapping image into a binary image, which is used to extract the valid point cloud from the original point cloud with outliers. …"
-
29
-
30
Comparison in terms of the sensitivity.
منشور في 2024"…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
31
Parameter sensitivity of BIMGO.
منشور في 2024"…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
32
Details of the medical datasets.
منشور في 2024"…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
33
The flowchart of IMGO.
منشور في 2024"…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
34
Comparison in terms of the selected features.
منشور في 2024"…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
35
Iterative chart of control factor.
منشور في 2024"…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
36
Details of 23 basic benchmark functions.
منشور في 2024"…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
37
Related researches.
منشور في 2024"…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
38
S1 Dataset -
منشور في 2024"…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
39
Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP
منشور في 2022"…<p>It is of great practical and theoretical significance to identify driver fatigue state in real time and accurately and provide active safety warning in time. In this paper, a non-invasive and low-cost method of fatigue driving state identification based on genetic algorithm optimization of generalized regression neural network model is proposed. …"
-
40
Summary of LITNET-2020 dataset.
منشور في 2023"…The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"