Search alternatives:
based optimization » whale optimization (Expand Search)
binary target » primary target (Expand Search), kinase target (Expand Search), final target (Expand Search)
binary paper » binary pairs (Expand Search)
target based » target area (Expand Search)
paper based » cancer based (Expand Search)
based optimization » whale optimization (Expand Search)
binary target » primary target (Expand Search), kinase target (Expand Search), final target (Expand Search)
binary paper » binary pairs (Expand Search)
target based » target area (Expand Search)
paper based » cancer based (Expand Search)
-
21
<i>hi</i>PRS algorithm process flow.
Published 2023“…Algorithm 1, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0281618#sec013" target="_blank">Materials and methods</a>). …”
-
22
Pseudo Code of RBMO.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
23
P-value on CEC-2017(Dim = 30).
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
24
Memory storage behavior.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
25
Elite search behavior.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
26
Description of the datasets.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
27
S and V shaped transfer functions.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
28
S- and V-Type transfer function diagrams.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
29
Collaborative hunting behavior.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
30
Friedman average rank sum test results.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
31
IRBMO vs. variant comparison adaptation data.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
32
Multicategory Angle-Based Learning for Estimating Optimal Dynamic Treatment Regimes With Censored Data
Published 2021“…In this article, we develop a novel angle-based approach to search the optimal DTR under a multicategory treatment framework for survival data. …”
-
33
A new fast filtering algorithm for a 3D point cloud based on RGB-D information
Published 2019“…This method aligns the color image to the depth image, and the color mapping image is converted to an HSV image. Then, the optimal segmentation threshold of the V image that is calculated by using the Otsu algorithm is applied to segment the color mapping image into a binary image, which is used to extract the valid point cloud from the original point cloud with outliers. …”
-
34
Triplet Matching for Estimating Causal Effects With Three Treatment Arms: A Comparative Study of Mortality by Trauma Center Level
Published 2021“…Our algorithm outperforms the nearest neighbor algorithm and is shown to produce matched samples with total distance no larger than twice the optimal distance. …”
-
35
-
36
-
37
-
38
Comparison in terms of the sensitivity.
Published 2024“…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
39
Parameter sensitivity of BIMGO.
Published 2024“…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
40
Details of the medical datasets.
Published 2024“…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”