Showing 1 - 15 results of 15 for search '(( binary paper path optimization algorithm ) OR ( binary water process optimization algorithm ))', query time: 0.53s Refine Results
  1. 1
  2. 2

    Table_1_A scheduling route planning algorithm based on the dynamic genetic algorithm with ant colony binary iterative optimization for unmanned aerial vehicle spraying in multiple... by Yangyang Liu (807797)

    Published 2022
    “…Simulation tests reveal that the dynamic genetic algorithm with ant colony binary iterative optimization (DGA-ACBIO) proposed in this study shortens the optimal flight range by 715.8 m, 428.3 m, 589 m, and 287.6 m compared to the dynamic genetic algorithm, ant colony binary iterative algorithm, artificial fish swarm algorithm (AFSA) and particle swarm optimization (PSO), respectively, for multiple tea field scheduling route planning. …”
  3. 3

    Hyperparameters of the LSTM Model. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …”
  4. 4

    The AD-PSO-Guided WOA LSTM framework. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …”
  5. 5

    Prediction results of individual models. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …”
  6. 6

    Classification performance after optimization. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  7. 7

    ANOVA test for optimization results. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  8. 8

    Wilcoxon test results for optimization. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  9. 9

    Wilcoxon test results for feature selection. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  10. 10

    Feature selection metrics and their definitions. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  11. 11

    Statistical summary of all models. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  12. 12

    Feature selection results. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  13. 13

    ANOVA test for feature selection. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  14. 14

    Classification performance of ML and DL models. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  15. 15

    MCLP_quantum_annealer_V0.5 by Anonymous Anonymous (4854526)

    Published 2025
    “…This paper presents a quantum computing path for Transformation-to-Sampling-to-Verification of geospatial optimization problems, adaptable to the controlled qubit scale and coherence constraints under current NISQ conditions. …”