Search alternatives:
guided optimization » based optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
binary part » binary pairs (Expand Search), binary plddt (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
part model » rat model (Expand Search), art models (Expand Search), bert model (Expand Search)
guided optimization » based optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
binary part » binary pairs (Expand Search), binary plddt (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
part model » rat model (Expand Search), art models (Expand Search), bert model (Expand Search)
-
1
-
2
-
3
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
4
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
5
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
6
-
7
IRBMO vs. variant comparison adaptation data.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
8
-
9
-
10
Pseudo Code of RBMO.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
11
P-value on CEC-2017(Dim = 30).
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
12
Memory storage behavior.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
13
Elite search behavior.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
14
Description of the datasets.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
15
S and V shaped transfer functions.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
16
S- and V-Type transfer function diagrams.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
17
Collaborative hunting behavior.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
18
Friedman average rank sum test results.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
19
Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf
Published 2024“…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …”
-
20
Thesis-RAMIS-Figs_Slides
Published 2024“…Importantly, this strategy locates samples adaptively on the transition between facies which improves the performance of conventional \emph{<i>MPS</i>} algorithms. In conclusion, this work shows that preferential sampling can contribute in \emph{<i>MPS</i>} even at very small sampling regimes and, as a corollary, demonstrates that prior models (obtained form a training image) can be used effectively not only to simulate non-sensed variables of the field, but to decide where to measure next.…”