Showing 1 - 20 results of 39 for search '(( binary phase learning optimization algorithm ) OR ( binary base codon optimization algorithm ))', query time: 0.50s Refine Results
  1. 1

    MSE for ILSTM algorithm in binary classification. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15

    Classification performance after optimization. by Amal H. Alharbi (21755906)

    Published 2025
    “…We applied this hybrid strategy to a Radial Basis Function Network (RBFN), and validated its performance improvements through extensive experiments, including ANOVA and Wilcoxon tests for both feature selection and optimization phases. The optimized model achieved a classification accuracy of 99.46%, significantly outperforming classical machine learning and unoptimized deep learning models. …”
  16. 16

    ANOVA test for optimization results. by Amal H. Alharbi (21755906)

    Published 2025
    “…We applied this hybrid strategy to a Radial Basis Function Network (RBFN), and validated its performance improvements through extensive experiments, including ANOVA and Wilcoxon tests for both feature selection and optimization phases. The optimized model achieved a classification accuracy of 99.46%, significantly outperforming classical machine learning and unoptimized deep learning models. …”
  17. 17

    Wilcoxon test results for optimization. by Amal H. Alharbi (21755906)

    Published 2025
    “…We applied this hybrid strategy to a Radial Basis Function Network (RBFN), and validated its performance improvements through extensive experiments, including ANOVA and Wilcoxon tests for both feature selection and optimization phases. The optimized model achieved a classification accuracy of 99.46%, significantly outperforming classical machine learning and unoptimized deep learning models. …”
  18. 18

    Wilcoxon test results for feature selection. by Amal H. Alharbi (21755906)

    Published 2025
    “…We applied this hybrid strategy to a Radial Basis Function Network (RBFN), and validated its performance improvements through extensive experiments, including ANOVA and Wilcoxon tests for both feature selection and optimization phases. The optimized model achieved a classification accuracy of 99.46%, significantly outperforming classical machine learning and unoptimized deep learning models. …”
  19. 19

    Feature selection metrics and their definitions. by Amal H. Alharbi (21755906)

    Published 2025
    “…We applied this hybrid strategy to a Radial Basis Function Network (RBFN), and validated its performance improvements through extensive experiments, including ANOVA and Wilcoxon tests for both feature selection and optimization phases. The optimized model achieved a classification accuracy of 99.46%, significantly outperforming classical machine learning and unoptimized deep learning models. …”
  20. 20

    Statistical summary of all models. by Amal H. Alharbi (21755906)

    Published 2025
    “…We applied this hybrid strategy to a Radial Basis Function Network (RBFN), and validated its performance improvements through extensive experiments, including ANOVA and Wilcoxon tests for both feature selection and optimization phases. The optimized model achieved a classification accuracy of 99.46%, significantly outperforming classical machine learning and unoptimized deep learning models. …”