Showing 61 - 80 results of 114 for search '(( binary phase process optimization algorithm ) OR ( binary a process optimization algorithm ))*', query time: 0.55s Refine Results
  1. 61

    Simulation parameters. by Hend Bayoumi (22693738)

    Published 2025
    “…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
  2. 62

    Training losses for N = 10. by Hend Bayoumi (22693738)

    Published 2025
    “…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
  3. 63

    Normalized computation rate for N = 10. by Hend Bayoumi (22693738)

    Published 2025
    “…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
  4. 64

    Summary of Notations Used in this paper. by Hend Bayoumi (22693738)

    Published 2025
    “…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
  5. 65
  6. 66
  7. 67

    Hyperparameters of the LSTM Model. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …”
  8. 68

    The AD-PSO-Guided WOA LSTM framework. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …”
  9. 69

    Prediction results of individual models. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …”
  10. 70
  11. 71

    Dynamic resource allocation process. by Yixian Wen (12201388)

    Published 2025
    “…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
  12. 72

    GSE96058 information. by Sepideh Zununi Vahed (9861298)

    Published 2024
    “…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
  13. 73

    The performance of classifiers. by Sepideh Zununi Vahed (9861298)

    Published 2024
    “…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
  14. 74

    Event-driven data flow processing. by Yixian Wen (12201388)

    Published 2025
    “…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
  15. 75
  16. 76
  17. 77
  18. 78

    Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19. by Jiaqing Luo (10975030)

    Published 2021
    “…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …”
  19. 79

    Summary of literature review. by Muhammad Ayyaz Sheikh (18610943)

    Published 2024
    “…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
  20. 80

    Topic description. by Muhammad Ayyaz Sheikh (18610943)

    Published 2024
    “…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”