Showing 41 - 60 results of 94 for search '(( binary phase process optimization algorithm ) OR ( binary data design optimization algorithm ))', query time: 0.44s Refine Results
  1. 41
  2. 42

    Proposed Algorithm. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  3. 43

    Parameter settings of the comparison algorithms. by Ying Li (38224)

    Published 2024
    “…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
  4. 44
  5. 45

    Comparisons between ADAM and NADAM optimizers. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  6. 46

    Wilcoxon test results for feature selection. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  7. 47

    Feature selection metrics and their definitions. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  8. 48

    Statistical summary of all models. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  9. 49

    Feature selection results. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  10. 50

    ANOVA test for feature selection. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  11. 51

    Classification performance of ML and DL models. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  12. 52

    IRBMO vs. variant comparison adaptation data. by Chenyi Zhu (9383370)

    Published 2025
    “…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
  13. 53

    Bayesian sequential design for sensitivity experiments with hybrid responses by Yuxia Liu (1779592)

    Published 2023
    “…To deal with the problem of complex computation involved in searching for optimal designs, fast algorithms are presented using two strategies to approximate the optimal criterion, denoted as SI-optimal design and Bayesian D-optimal design, respectively. …”
  14. 54

    Pseudo Code of RBMO. by Chenyi Zhu (9383370)

    Published 2025
    “…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
  15. 55

    P-value on CEC-2017(Dim = 30). by Chenyi Zhu (9383370)

    Published 2025
    “…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
  16. 56

    Memory storage behavior. by Chenyi Zhu (9383370)

    Published 2025
    “…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
  17. 57

    Elite search behavior. by Chenyi Zhu (9383370)

    Published 2025
    “…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
  18. 58

    Description of the datasets. by Chenyi Zhu (9383370)

    Published 2025
    “…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
  19. 59

    S and V shaped transfer functions. by Chenyi Zhu (9383370)

    Published 2025
    “…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
  20. 60

    S- and V-Type transfer function diagrams. by Chenyi Zhu (9383370)

    Published 2025
    “…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”