بدائل البحث:
process optimization » model optimization (توسيع البحث)
due optimization » dose optimization (توسيع البحث), fuel optimization (توسيع البحث), d optimization (توسيع البحث)
phase process » phase proteins (توسيع البحث), whole process (توسيع البحث), phase protein (توسيع البحث)
binary phase » binary image (توسيع البحث), final phase (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
process optimization » model optimization (توسيع البحث)
due optimization » dose optimization (توسيع البحث), fuel optimization (توسيع البحث), d optimization (توسيع البحث)
phase process » phase proteins (توسيع البحث), whole process (توسيع البحث), phase protein (توسيع البحث)
binary phase » binary image (توسيع البحث), final phase (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
-
41
Supplementary Material for: Penalized Logistic Regression Analysis for Genetic Association Studies of Binary Phenotypes
منشور في 2022"…Our estimate of m is the maximizer of a marginal likelihood obtained by integrating the latent log-ORs out of the joint distribution of the parameters and observed data. We consider two approximate approaches to maximizing the marginal likelihood: (i) a Monte Carlo EM algorithm (MCEM) and (ii) a Laplace approximation (LA) to each integral, followed by derivative-free optimization of the approximation. …"
-
42
Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf
منشور في 2024"…Next, a hybrid feature extraction approach is presented leveraging transfer learning from selected deep neural network models, InceptionV3 and DenseNet201, to extract comprehensive feature sets. To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …"
-
43
GSE96058 information.
منشور في 2024"…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …"
-
44
The performance of classifiers.
منشور في 2024"…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …"
-
45
-
46
PathOlOgics_RBCs Python Scripts.zip
منشور في 2023"…</p><p dir="ltr">In terms of classification, a second algorithm was developed and employed to preliminary sort or group the individual cells (after excluding the overlapping cells manually) into different categories using five geometric measurements applied to the extracted contour from each binary image mask (see PathOlOgics_script_2; preliminary shape measurements). …"
-
47
Fortran & C++: design fractal-type optical diffractive element
منشور في 2022"…</p> <p>(2) calculate diffraction fields for fractal and/or grid-matrix (binary) phase-holograms.</p> <p>(3) optimize the fractal and/or grid-matrix holograms for given target diffraction images, using annealing algorithms. …"
-
48
Active Learning Accelerated Discovery of Stable Iridium Oxide Polymorphs for the Oxygen Evolution Reaction
منشور في 2020"…We emphasize that the proposed AL algorithm can be easily generalized to search for any binary metal oxide structure with a defined stoichiometry.…"