بدائل البحث:
process optimization » model optimization (توسيع البحث)
used optimization » based optimization (توسيع البحث), led optimization (توسيع البحث), guided optimization (توسيع البحث)
phase process » phase proteins (توسيع البحث), whole process (توسيع البحث), phase protein (توسيع البحث)
binary phase » binary image (توسيع البحث), final phase (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
process optimization » model optimization (توسيع البحث)
used optimization » based optimization (توسيع البحث), led optimization (توسيع البحث), guided optimization (توسيع البحث)
phase process » phase proteins (توسيع البحث), whole process (توسيع البحث), phase protein (توسيع البحث)
binary phase » binary image (توسيع البحث), final phase (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
-
41
-
42
The Pseudo-Code of the IRBMO Algorithm.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
43
The flowchart of the proposed algorithm.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
44
-
45
IRBMO vs. meta-heuristic algorithms boxplot.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
46
IRBMO vs. feature selection algorithm boxplot.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
47
-
48
The statistical description of the original data set of the patients (<i>n</i> = 162).
منشور في 2025الموضوعات: -
49
-
50
The list of parameters of the modified data set for machine learning (<i>n</i> = 162).
منشور في 2025الموضوعات: -
51
Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data
منشور في 2022"…In this study, the effects of CI and data scarcity (DS) on the performance of binary classification models were investigated using ToxCast bioassay data. …"
-
52
Wilcoxon test results for feature selection.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
53
Feature selection metrics and their definitions.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
54
Statistical summary of all models.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
55
Feature selection results.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
56
ANOVA test for feature selection.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
57
Classification performance of ML and DL models.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
58
-
59
-
60