Search alternatives:
process optimization » model optimization (Expand Search)
policy optimization » topology optimization (Expand Search), wolf optimization (Expand Search)
phase process » phase proteins (Expand Search), whole process (Expand Search), phase protein (Expand Search)
binary phase » binary image (Expand Search), final phase (Expand Search)
binary mask » binary image (Expand Search)
mask policy » risk policy (Expand Search)
process optimization » model optimization (Expand Search)
policy optimization » topology optimization (Expand Search), wolf optimization (Expand Search)
phase process » phase proteins (Expand Search), whole process (Expand Search), phase protein (Expand Search)
binary phase » binary image (Expand Search), final phase (Expand Search)
binary mask » binary image (Expand Search)
mask policy » risk policy (Expand Search)
-
21
-
22
-
23
-
24
-
25
Small-scale dataset comparative analysis using the number of features selected.
Published 2023Subjects: -
26
-
27
-
28
-
29
-
30
Wilcoxon test results for feature selection.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
31
Feature selection metrics and their definitions.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
32
Statistical summary of all models.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
33
Feature selection results.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
34
ANOVA test for feature selection.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
35
Classification performance of ML and DL models.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
36
-
37
-
38
GSE96058 information.
Published 2024“…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
-
39
The performance of classifiers.
Published 2024“…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
-
40