Search alternatives:
process optimization » robust optimization (Expand Search), model optimization (Expand Search), policy optimization (Expand Search)
based optimization » whale optimization (Expand Search), bayesian optimization (Expand Search)
phase process » whole process (Expand Search)
binary phase » binary image (Expand Search), final phase (Expand Search), binary mask (Expand Search)
binary task » binary mask (Expand Search)
task based » risk based (Expand Search)
process optimization » robust optimization (Expand Search), model optimization (Expand Search), policy optimization (Expand Search)
based optimization » whale optimization (Expand Search), bayesian optimization (Expand Search)
phase process » whole process (Expand Search)
binary phase » binary image (Expand Search), final phase (Expand Search), binary mask (Expand Search)
binary task » binary mask (Expand Search)
task based » risk based (Expand Search)
-
1
-
2
-
3
Proposed Algorithm.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
4
Comparisons between ADAM and NADAM optimizers.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
5
Classification performance after optimization.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
6
ANOVA test for optimization results.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
7
Wilcoxon test results for optimization.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
8
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
9
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
10
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
11
Wilcoxon test results for feature selection.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
12
Feature selection metrics and their definitions.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
13
Statistical summary of all models.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
14
Feature selection results.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
15
ANOVA test for feature selection.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
16
Classification performance of ML and DL models.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
17
An Example of a WPT-MEC Network.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
18
Related Work Summary.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
19
Simulation parameters.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
20
Training losses for N = 10.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”