Showing 1 - 20 results of 28 for search '(( binary pre processing optimization algorithm ) OR ( lens based model optimization algorithm ))', query time: 0.58s Refine Results
  1. 1

    Lens imaging opposition-based learning. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  2. 2

    Optical Assessment of Tear Glucose by Smart Biosensor Based on Nanoparticle Embedded Contact Lens by Hee-Jae Jeon (4614121)

    Published 2021
    “…Additionally, we propose an image processing algorithm that automatically optimizes the measurement accuracy even in the presence of image blurring, possibly caused by breathing, subtle movements, and eye blinking. …”
  3. 3

    Optical Assessment of Tear Glucose by Smart Biosensor Based on Nanoparticle Embedded Contact Lens by Hee-Jae Jeon (4614121)

    Published 2021
    “…Additionally, we propose an image processing algorithm that automatically optimizes the measurement accuracy even in the presence of image blurring, possibly caused by breathing, subtle movements, and eye blinking. …”
  4. 4
  5. 5

    Compare algorithm parameter settings. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  6. 6
  7. 7
  8. 8

    Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things by Ashok Kumar K (21441108)

    Published 2025
    “…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”
  9. 9

    -value on CEC2022 (dim = 20). by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  10. 10

    Precision elimination strategy. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  11. 11

    Results of low-light image enhancement test. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  12. 12

    -value on 23 benchmark functions (dim = 30). by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  13. 13

    Evaluation metrics obtained by SBOA and MESBOA. by Yuqi Xiong (12343771)

    Published 2025
    “…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
  14. 14
  15. 15
  16. 16

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) by Daniel Pérez Palau (11097348)

    Published 2024
    “…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
  17. 17

    adjoint-elastic-registration.zip from Organ registration from partial surface data in augmented surgery from an optimal control perspective by Stéphane Cotin (3944129)

    Published 2023
    “…The resulting optimization problem features an elastic model, a least-squares data attachment term based on orthogonal projections, and an admissible set of surface loads defined prior to reconstruction in the mechanical model. …”
  18. 18

    PathOlOgics_RBCs Python Scripts.zip by Ahmed Elsafty (16943883)

    Published 2023
    “…This process generated a ground-truth binary semantic segmentation mask and determined the bounding box coordinates (XYWH) for each cell. …”
  19. 19

    Massive Mixed Models in Julia by Phillip M. Alday (2814652)

    Published 2025
    “…<br><br>Although we are already very excited to be able to fit such large models at all, we want to fit them even faster. Julia enables us to continue algorithmic development in a coherent way. …”
  20. 20

    Thesis-RAMIS-Figs_Slides by Felipe Santibañez-Leal (10967991)

    Published 2024
    “…<br><br>Finally, although the developed concepts, ideas and algorithms have been developed for inverse problems in geostatistics, the results are applicable to a wide range of disciplines where similar sampling problems need to be faced, included but not limited to design of communication networks, optimal integration and communication of swarms of robots and drones, remote sensing.…”