بدائل البحث:
resource optimization » resource utilization (توسيع البحث), resource utilisation (توسيع البحث), resource limitations (توسيع البحث)
models optimization » model optimization (توسيع البحث), process optimization (توسيع البحث), wolf optimization (توسيع البحث)
psc resource » aac resource (توسيع البحث), space resource (توسيع البحث), also resource (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
resource optimization » resource utilization (توسيع البحث), resource utilisation (توسيع البحث), resource limitations (توسيع البحث)
models optimization » model optimization (توسيع البحث), process optimization (توسيع البحث), wolf optimization (توسيع البحث)
psc resource » aac resource (توسيع البحث), space resource (توسيع البحث), also resource (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
-
41
IRBMO vs. variant comparison adaptation data.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
42
-
43
-
44
-
45
-
46
-
47
-
48
Pseudo Code of RBMO.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
49
P-value on CEC-2017(Dim = 30).
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
50
Memory storage behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
51
Elite search behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
52
Description of the datasets.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
53
S and V shaped transfer functions.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
54
S- and V-Type transfer function diagrams.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
55
Collaborative hunting behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
56
Friedman average rank sum test results.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
57
-
58
Generalized Tensor Decomposition With Features on Multiple Modes
منشور في 2021"…Our proposal handles a broad range of data types, including continuous, count, and binary observations. …"
-
59
Solubility Prediction of Different Forms of Pharmaceuticals in Single and Mixed Solvents Using Symmetric Electrolyte Nonrandom Two-Liquid Segment Activity Coefficient Model
منشور في 2019"…Moreover, a design of experiments is included in the methodology to generate and use experimental data appropriately for model parameter regression and model validation. …"
-
60