Showing 1 - 7 results of 7 for search '(( binary ranked based optimization algorithm ) OR ( binary data stress optimization algorithm ))*', query time: 0.36s Refine Results
  1. 1
  2. 2

    <i>hi</i>PRS algorithm process flow. by Michela C. Massi (14599915)

    Published 2023
    “…From this dataset we can compute the MI between each interaction and the outcome and <b>(D)</b> obtain a ranked list (<i>I</i><sub><i>δ</i></sub>) based on this metric. …”
  3. 3

    Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19. by Jiaqing Luo (10975030)

    Published 2021
    “…P <0.05 was considered statistically significant. (B). The MCDM algorithm-Stage 2. Feature Ranking, this stage is the process of using the TOPSIS method to rank features. …”
  4. 4
  5. 5

    Data_Sheet_1_Prediction of Mental Health in Medical Workers During COVID-19 Based on Machine Learning.ZIP by Xiaofeng Wang (119575)

    Published 2021
    “…In this study, we propose a novel prediction model based on optimization algorithm and neural network, which can select and rank the most important factors that affect mental health of medical workers. …”
  6. 6

    PathOlOgics_RBCs Python Scripts.zip by Ahmed Elsafty (16943883)

    Published 2023
    “…</p><p dir="ltr">In terms of classification, a second algorithm was developed and employed to preliminary sort or group the individual cells (after excluding the overlapping cells manually) into different categories using five geometric measurements applied to the extracted contour from each binary image mask (see PathOlOgics_script_2; preliminary shape measurements). …”
  7. 7

    Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles by Soham Savarkar (21811825)

    Published 2025
    “…</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…”