Search alternatives:
complex optimization » convex optimization (Expand Search), whale optimization (Expand Search), wolf optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary rate » binary data (Expand Search), binary image (Expand Search)
final layer » single layer (Expand Search)
rate based » rule based (Expand Search), made based (Expand Search), game based (Expand Search)
complex optimization » convex optimization (Expand Search), whale optimization (Expand Search), wolf optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary rate » binary data (Expand Search), binary image (Expand Search)
final layer » single layer (Expand Search)
rate based » rule based (Expand Search), made based (Expand Search), game based (Expand Search)
-
21
Comparison of differences in literature methods.
Published 2025“…In the experiments, optimization metrics such as kinematic optimization rate (calculated based on the shortest path and connectivity between functional areas), space utilization rate (calculated by the ratio of room area to total usable space), and functional fitness (based on the weighted sum of users’ subjective evaluations and functional matches) all perform well. …”
-
22
New building interior space layout model flow.
Published 2025“…In the experiments, optimization metrics such as kinematic optimization rate (calculated based on the shortest path and connectivity between functional areas), space utilization rate (calculated by the ratio of room area to total usable space), and functional fitness (based on the weighted sum of users’ subjective evaluations and functional matches) all perform well. …”
-
23
Schematic of iteration process of IDE-IIGA.
Published 2025“…In the experiments, optimization metrics such as kinematic optimization rate (calculated based on the shortest path and connectivity between functional areas), space utilization rate (calculated by the ratio of room area to total usable space), and functional fitness (based on the weighted sum of users’ subjective evaluations and functional matches) all perform well. …”
-
24
Schematic diagram of IGA chromosome coding.
Published 2025“…In the experiments, optimization metrics such as kinematic optimization rate (calculated based on the shortest path and connectivity between functional areas), space utilization rate (calculated by the ratio of room area to total usable space), and functional fitness (based on the weighted sum of users’ subjective evaluations and functional matches) all perform well. …”
-
25
Comparative discussion based on routing.
Published 2023“…Here, RNBJSO is the combination of Namib Beetle Optimization (NBO), Remora Optimization Algorithm (ROA) and Jellyfish Search optimization (JSO). …”
-
26
Comparative discussion on database-1.
Published 2023“…Here, RNBJSO is the combination of Namib Beetle Optimization (NBO), Remora Optimization Algorithm (ROA) and Jellyfish Search optimization (JSO). …”
-
27
Simulation parameter.
Published 2023“…Here, RNBJSO is the combination of Namib Beetle Optimization (NBO), Remora Optimization Algorithm (ROA) and Jellyfish Search optimization (JSO). …”
-
28
Systematic model of fog-cloud COVID prediction.
Published 2023“…Here, RNBJSO is the combination of Namib Beetle Optimization (NBO), Remora Optimization Algorithm (ROA) and Jellyfish Search optimization (JSO). …”
-
29
Comparative discussion on database-2.
Published 2023“…Here, RNBJSO is the combination of Namib Beetle Optimization (NBO), Remora Optimization Algorithm (ROA) and Jellyfish Search optimization (JSO). …”
-
30
Solution encoding.
Published 2023“…Here, RNBJSO is the combination of Namib Beetle Optimization (NBO), Remora Optimization Algorithm (ROA) and Jellyfish Search optimization (JSO). …”
-
31
Architectural view of DNFN.
Published 2023“…Here, RNBJSO is the combination of Namib Beetle Optimization (NBO), Remora Optimization Algorithm (ROA) and Jellyfish Search optimization (JSO). …”
-
32
Architecture of Deep LSTM.
Published 2023“…Here, RNBJSO is the combination of Namib Beetle Optimization (NBO), Remora Optimization Algorithm (ROA) and Jellyfish Search optimization (JSO). …”
-
33
Architectural view of PSP-Net.
Published 2023“…Here, RNBJSO is the combination of Namib Beetle Optimization (NBO), Remora Optimization Algorithm (ROA) and Jellyfish Search optimization (JSO). …”
-
34
Simulation parameters.
Published 2023“…Here, RNBJSO is the combination of Namib Beetle Optimization (NBO), Remora Optimization Algorithm (ROA) and Jellyfish Search optimization (JSO). …”
-
35
-
36
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
Published 2019“…<div><p>An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current single-feature classification algorithms and simple multifeature fusion algorithms. …”
-
37
-
38
-
39
The details of the control group.
Published 2023“…Five state-of-the-art evolutionary algorithms are used in the control group. Finally, experimental results demonstrate that the DMBBPSO can provide high precision results for single-objective optimization problems.…”
-
40
The flowchart of DMBBPSO.
Published 2023“…Five state-of-the-art evolutionary algorithms are used in the control group. Finally, experimental results demonstrate that the DMBBPSO can provide high precision results for single-objective optimization problems.…”