Search alternatives:
based optimization » whale optimization (Expand Search)
over optimization » other optimization (Expand Search), convex optimization (Expand Search), model optimization (Expand Search)
binary dataset » final dataset (Expand Search), binary data (Expand Search), ovary dataset (Expand Search)
dataset over » dataset after (Expand Search), dataset model (Expand Search), dataset covering (Expand Search)
binary risk » primary risk (Expand Search), dietary risk (Expand Search)
based optimization » whale optimization (Expand Search)
over optimization » other optimization (Expand Search), convex optimization (Expand Search), model optimization (Expand Search)
binary dataset » final dataset (Expand Search), binary data (Expand Search), ovary dataset (Expand Search)
dataset over » dataset after (Expand Search), dataset model (Expand Search), dataset covering (Expand Search)
binary risk » primary risk (Expand Search), dietary risk (Expand Search)
-
1
-
2
MSE for ILSTM algorithm in binary classification.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
3
Datasets and their properties.
Published 2023“…To address this, we proposed a novel hybrid binary optimization capable of effectively selecting features from increasingly high-dimensional datasets. …”
-
4
Parameter settings.
Published 2023“…To address this, we proposed a novel hybrid binary optimization capable of effectively selecting features from increasingly high-dimensional datasets. …”
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
Flow diagram of the proposed model.
Published 2025“…<div><p>Machine learning models are increasingly applied to assisted reproductive technologies (ART), yet most studies rely on conventional algorithms with limited optimization. This proof-of-concept study investigates whether a hybrid Logistic Regression–Artificial Bee Colony (LR–ABC) framework can enhance predictive performance in in vitro fertilization (IVF) outcomes while producing interpretable, hypothesis-driven associations with nutritional and pharmaceutical supplement use. …”
-
15
Summary of LITNET-2020 dataset.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
16
NSL-KDD dataset description.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
17
SHAP analysis for LITNET-2020 dataset.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
18
-
19
Multicategory Angle-Based Learning for Estimating Optimal Dynamic Treatment Regimes With Censored Data
Published 2021“…In this article, we develop a novel angle-based approach to search the optimal DTR under a multicategory treatment framework for survival data. …”
-
20
Comparison of intrusion detection systems.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”