Search alternatives:
learning optimization » learning motivation (Expand Search), lead optimization (Expand Search)
codon optimization » wolf optimization (Expand Search)
library based » laboratory based (Expand Search)
binary risk » primary risk (Expand Search), dietary risk (Expand Search)
learning optimization » learning motivation (Expand Search), lead optimization (Expand Search)
codon optimization » wolf optimization (Expand Search)
library based » laboratory based (Expand Search)
binary risk » primary risk (Expand Search), dietary risk (Expand Search)
-
61
-
62
Addressing Imbalanced Classification Problems in Drug Discovery and Development Using Random Forest, Support Vector Machine, AutoGluon-Tabular, and H2O AutoML
Published 2025“…The important findings of our studies are as follows: (i) there is no effect of threshold optimization on ranking metrics such as AUC and AUPR, but AUC and AUPR get affected by class-weighting and SMOTTomek; (ii) for ML methods RF and SVM, significant percentage improvement up to 375, 33.33, and 450 over all the data sets can be achieved, respectively, for F1 score, MCC, and balanced accuracy, which are suitable for performance evaluation of imbalanced data sets; (iii) for AutoML libraries AutoGluon-Tabular and H2O AutoML, significant percentage improvement up to 383.33, 37.25, and 533.33 over all the data sets can be achieved, respectively, for F1 score, MCC, and balanced accuracy; (iv) the general pattern of percentage improvement in balanced accuracy is that the percentage improvement increases when the class ratio is systematically decreased from 0.5 to 0.1; in the case of F1 score and MCC, maximum improvement is achieved at the class ratio of 0.3; (v) for both ML and AutoML with balancing, it is observed that any individual class-balancing technique does not outperform all other methods on a significantly higher number of data sets based on F1 score; (vi) the three external balancing techniques combined outperformed the internal balancing methods of the ML and AutoML; (vii) AutoML tools perform as good as the ML models and in some cases perform even better for handling imbalanced classification when applied with imbalance handling techniques. …”
-
63
Algorithms of Load Balancing in Next-Generation Mobile Netwoks: A systematic literature review
Published 2025“…Through a <b>systematic review following the PRISMA methodology</b>, we analyzed 45 studies from five scientific databases (IEEE Xplore, Scopus, ScienceDirect, SpringerLink, and ACM Digital Library), identifying key patterns:</p><ol><li>The correlation between optimization parameters (latency, throughput, user mobility) and the performance of automatic/hybrid algorithms.…”
-
64
Presentation_1_Optimization of the k-nearest-neighbors model for summer Arctic Sea ice prediction.pdf
Published 2023“…Based on the physical characteristics of summer sea ice, different algorithms are employed to optimize the prediction model. …”
-
65
Presentation_1_Optimization of the k-nearest-neighbors model for summer Arctic Sea ice prediction.pdf
Published 2023“…Based on the physical characteristics of summer sea ice, different algorithms are employed to optimize the prediction model. …”
-
66
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery
Published 2025“…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
-
67
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery
Published 2025“…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
-
68
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery
Published 2025“…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
-
69
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery
Published 2025“…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
-
70
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery
Published 2025“…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
-
71
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery
Published 2025“…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
-
72
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery
Published 2025“…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
-
73
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery
Published 2025“…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
-
74
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery
Published 2025“…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
-
75
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery
Published 2025“…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
-
76
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery
Published 2025“…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
-
77
PoseidonQ: A Free Machine Learning Platform for the Development, Analysis, and Validation of Efficient and Portable QSAR Models for Drug Discovery
Published 2025“…The advent of powerful machine learning algorithms as well as the availability of high volume of pharmacological data has given new fuel to QSAR, opening new unprecedented options for deriving highly predictive models for assisting the rationale design of new bioactive compounds, for screening and prioritizing large molecular libraries, and for repurposing new drugs toward new clinical uses. …”
-
78
Distribution of Bound Conformations in Conformational Ensembles for X‑ray Ligands Predicted by the ANI-2X Machine Learning Potential
Published 2023“…This information is useful to guide the construction of libraries for shape-based virtual screening and to improve the docking algorithm to efficiently sample bound conformations.…”
-
79
Distribution of Bound Conformations in Conformational Ensembles for X‑ray Ligands Predicted by the ANI-2X Machine Learning Potential
Published 2023“…This information is useful to guide the construction of libraries for shape-based virtual screening and to improve the docking algorithm to efficiently sample bound conformations.…”
-
80
Table_1_Data-based modeling for hypoglycemia prediction: Importance, trends, and implications for clinical practice.docx
Published 2023“…Models utilizing clinical data have identified a variety of risk factors that can lead to hypoglycemic events. Data-driven models based on various techniques such as neural networks, autoregressive, ensemble learning, supervised learning, and mathematical formulas have also revealed suggestive features in cases of hypoglycemia prediction.…”