بدائل البحث:
derived optimization » driven optimization (توسيع البحث), required optimization (توسيع البحث), design optimization (توسيع البحث)
while optimization » whale optimization (توسيع البحث), wolf optimization (توسيع البحث), phase optimization (توسيع البحث)
risks derived » risks perceived (توسيع البحث), virus derived (توسيع البحث), lines derived (توسيع البحث)
binary risks » dietary risks (توسيع البحث), binary mask (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
a while » a whole (توسيع البحث), a white (توسيع البحث)
derived optimization » driven optimization (توسيع البحث), required optimization (توسيع البحث), design optimization (توسيع البحث)
while optimization » whale optimization (توسيع البحث), wolf optimization (توسيع البحث), phase optimization (توسيع البحث)
risks derived » risks perceived (توسيع البحث), virus derived (توسيع البحث), lines derived (توسيع البحث)
binary risks » dietary risks (توسيع البحث), binary mask (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
a while » a whole (توسيع البحث), a white (توسيع البحث)
-
1
-
2
MSE for ILSTM algorithm in binary classification.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
3
-
4
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
منشور في 2025"…In this work, we propose a novel framework that integrates </p><p dir="ltr">Convolutional Neural Networks (CNNs) for image classification and a binary Grey Wolf Optimization (GWO) </p><p dir="ltr">algorithm for feature selection. …"
-
5
Data_Sheet_1_A Global Optimizer for Nanoclusters.PDF
منشور في 2019"…While generating the trial geometries, a Tabu list is used for storing the information of the already used trial geometries to avoid using the similar trial geometries. …"
-
6
The flowchart of the proposed algorithm.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
7
-
8
-
9
Data_Sheet_1_Posiform planting: generating QUBO instances for benchmarking.pdf
منشور في 2023"…<p>We are interested in benchmarking both quantum annealing and classical algorithms for minimizing quadratic unconstrained binary optimization (QUBO) problems. …"
-
10
Datasets and their properties.
منشور في 2023"…In addition, we designed nested transfer (NT) functions and investigated the influence of the function on the level-1 optimizer. The binary Ebola optimization search algorithm (BEOSA) is applied for the level-1 mutation, while the simulated annealing (SA) and firefly (FFA) algorithms are investigated for the level-2 optimizer. …"
-
11
Parameter settings.
منشور في 2023"…In addition, we designed nested transfer (NT) functions and investigated the influence of the function on the level-1 optimizer. The binary Ebola optimization search algorithm (BEOSA) is applied for the level-1 mutation, while the simulated annealing (SA) and firefly (FFA) algorithms are investigated for the level-2 optimizer. …"
-
12
Flow diagram of the proposed model.
منشور في 2025"…<div><p>Machine learning models are increasingly applied to assisted reproductive technologies (ART), yet most studies rely on conventional algorithms with limited optimization. This proof-of-concept study investigates whether a hybrid Logistic Regression–Artificial Bee Colony (LR–ABC) framework can enhance predictive performance in in vitro fertilization (IVF) outcomes while producing interpretable, hypothesis-driven associations with nutritional and pharmaceutical supplement use. …"
-
13
-
14
Summary of literature review.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
15
Topic description.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
16
Notations along with their descriptions.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
17
Detail of the topics extracted from DUC2002.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
18
the functioning of BRPSO.
منشور في 2025"…The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …"
-
19
Characteristic of 6- and 10-story SMRF [99,98].
منشور في 2025"…The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …"
-
20
The RFD’s behavior mechanism (2002).
منشور في 2025"…The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …"