Showing 1 - 16 results of 16 for search '(( binary sample design optimization algorithm ) OR ( binary data led optimization algorithm ))', query time: 0.67s Refine Results
  1. 1
  2. 2

    Proposed Algorithm. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  3. 3

    Comparisons between ADAM and NADAM optimizers. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  4. 4
  5. 5

    An Example of a WPT-MEC Network. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  6. 6

    Related Work Summary. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  7. 7

    Simulation parameters. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  8. 8

    Training losses for N = 10. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  9. 9

    Normalized computation rate for N = 10. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  10. 10

    Summary of Notations Used in this paper. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  11. 11

    Triplet Matching for Estimating Causal Effects With Three Treatment Arms: A Comparative Study of Mortality by Trauma Center Level by Giovanni Nattino (561797)

    Published 2021
    “…We fill the gap by developing an iterative matching algorithm for the three-group setting. Our algorithm outperforms the nearest neighbor algorithm and is shown to produce matched samples with total distance no larger than twice the optimal distance. …”
  12. 12

    Thesis-RAMIS-Figs_Slides by Felipe Santibañez-Leal (10967991)

    Published 2024
    “…<br><br>Finally, although the developed concepts, ideas and algorithms have been developed for inverse problems in geostatistics, the results are applicable to a wide range of disciplines where similar sampling problems need to be faced, included but not limited to design of communication networks, optimal integration and communication of swarms of robots and drones, remote sensing.…”
  13. 13

    MCLP_quantum_annealer_V0.5 by Anonymous Anonymous (4854526)

    Published 2025
    “…This paper first proposes the QUBO-MCLP algorithm workflow and designs the Transformation Operator for Inequality Constraints Considering the Capacity of Accessible Providers (TOICCAP), which accounts for the scale of accessible supply points. …”
  14. 14

    Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports by Olivier Q. Groot (9370461)

    Published 2020
    “…<p> The widespread use of electronic patient-generated health data has led to unprecedented opportunities for automated extraction of clinical features from free-text medical notes. …”
  15. 15

    Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP by Xiaoyuan Wang (492534)

    Published 2022
    “…The specific work is as follows: (1) design simulated driving experiment and real driving experiment, determine the fatigue state of drivers according to the binary Karolinska Sleepiness Scale (KSS), and establish the fatigue driving sample database. (2) Improved Multi-Task Cascaded Convolutional Networks (MTCNN) and applied to face detection. …”
  16. 16

    Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx by Ali Nabavi (21097424)

    Published 2025
    “…., blood lead and cadmium levels) were analyzed as features, with hearing loss status—defined as a pure-tone average threshold exceeding 25 dB HL across 500, 1,000, 2000, and 4,000 Hz in the better ear—serving as the binary outcome. Multiple machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, Logistic Regression, CatBoost, and MLP, were optimized and evaluated. …”