بدائل البحث:
process optimization » model optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
sample process » simple process (توسيع البحث), same process (توسيع البحث), sample processing (توسيع البحث)
binary sample » final sample (توسيع البحث), binary people (توسيع البحث), intra sample (توسيع البحث)
binary b » binary _ (توسيع البحث)
b based » _ based (توسيع البحث), 1 based (توسيع البحث), 2 based (توسيع البحث)
process optimization » model optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
sample process » simple process (توسيع البحث), same process (توسيع البحث), sample processing (توسيع البحث)
binary sample » final sample (توسيع البحث), binary people (توسيع البحث), intra sample (توسيع البحث)
binary b » binary _ (توسيع البحث)
b based » _ based (توسيع البحث), 1 based (توسيع البحث), 2 based (توسيع البحث)
-
41
-
42
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
منشور في 2024"…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …"
-
43
MCLP_quantum_annealer_V0.5
منشور في 2025"…This paper presents a quantum computing path for Transformation-to-Sampling-to-Verification of geospatial optimization problems, adaptable to the controlled qubit scale and coherence constraints under current NISQ conditions. …"
-
44
-
45
-
46
Steps in the extraction of 14 coordinates from the CT slices for the curved MPR.
منشور في 2025"…Protruding paths are then eliminated using graph-based optimization algorithms, as demonstrated in f). …"
-
47
Models and Dataset
منشور في 2025"…</p><p dir="ltr"><br></p><p dir="ltr"><b>RAO (Rao Optimization Algorithm):</b><br>RAO is a parameter-less optimization algorithm that updates solutions based on simple arithmetic operations involving the best and worst individuals in the population. …"
-
48
Supplementary Material 8
منشور في 2025"…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…"
-
49
Flow diagram of the automatic animal detection and background reconstruction.
منشور في 2020"…(E) The threshold value is calculated based on the histogram: it is the mean of the image subtracted by 4 (optimal value defined by trial and error). …"
-
50
DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
منشور في 2024"…The accuracy of the optimal scenario for classifying samples with a cooking time of 30 minutes reached RCal2 = 0.86 and RVal2 = 0.84, with a Kappa value of 0.53. …"
-
51
Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
منشور في 2024"…The accuracy of the optimal scenario for classifying samples with a cooking time of 30 minutes reached RCal2 = 0.86 and RVal2 = 0.84, with a Kappa value of 0.53. …"
-
52
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
منشور في 2025"…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…"