بدائل البحث:
models optimization » model optimization (توسيع البحث), process optimization (توسيع البحث), wolf optimization (توسيع البحث)
binary scale » binary image (توسيع البحث)
scale models » scale model (توسيع البحث)
binary base » binary mask (توسيع البحث), ciliary base (توسيع البحث), binary image (توسيع البحث)
swarm » warm (توسيع البحث)
models optimization » model optimization (توسيع البحث), process optimization (توسيع البحث), wolf optimization (توسيع البحث)
binary scale » binary image (توسيع البحث)
scale models » scale model (توسيع البحث)
binary base » binary mask (توسيع البحث), ciliary base (توسيع البحث), binary image (توسيع البحث)
swarm » warm (توسيع البحث)
-
21
LITNET-2020 data splitting approach.
منشور في 2023"…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
22
Transformation of symbolic features in NSL-KDD.
منشور في 2023"…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
23
Solubility Prediction of Different Forms of Pharmaceuticals in Single and Mixed Solvents Using Symmetric Electrolyte Nonrandom Two-Liquid Segment Activity Coefficient Model
منشور في 2019"…The solubility predictions of fusidic acid, fusidic acid acetone solvate, and sodium fusidate in various single solvents show good agreement with experimental solubility with average squared relative errors of 0.055, 0.079, and 0.084 in logarithmic mole fraction scale, respectively. The model moreover predicts solubilities in binary solvent mixture and as a function of temperature in satisfactory agreement with experimental solubility.…"
-
24
-
25
the functioning of BRPSO.
منشور في 2025"…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …"
-
26
Characteristic of 6- and 10-story SMRF [99,98].
منشور في 2025"…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …"
-
27
The RFD’s behavior mechanism (2002).
منشور في 2025"…A sensitivity analysis of key RFD parameters, including frictional moment and rigid beam length, highlights their influence on seismic performance. The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …"
-
28
-
29
-
30
MCLP_quantum_annealer_V0.5
منشور في 2025"…<p dir="ltr">Geospatial optimization problems are fundamental research issues in geographic information science modeling, characterized by high dimensionality, dynamics, and discreteness. …"
-
31
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
منشور في 2019"…The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. …"
-
32
GSE96058 information.
منشور في 2024"…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …"
-
33
The performance of classifiers.
منشور في 2024"…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …"
-
34
Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP
منشور في 2022"…In this paper, a non-invasive and low-cost method of fatigue driving state identification based on genetic algorithm optimization of generalized regression neural network model is proposed. …"
-
35
Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat.
منشور في 2025"…Optimization with GridSearchCV corroborated this stagnation, identifying a simple linear model (C=0.05, gamma='scale') as the optimal configuration, indicating that the additional complexity of nonlinear kernels did not confer predictive gains. …"