Showing 1 - 20 results of 26 for search '(( binary search process optimization algorithms ) OR ( binary b codon optimization algorithm ))', query time: 0.40s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4

    Classification performance after optimization. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  5. 5

    ANOVA test for optimization results. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  6. 6

    Wilcoxon test results for optimization. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  7. 7

    Hyperparameters of the LSTM Model. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…The AD-PSO-Guided WOA overcomes limitations of conventional optimization algorithms, such as premature convergence by balancing global search (exploration) and local refinement (exploitation). …”
  8. 8

    The AD-PSO-Guided WOA LSTM framework. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…The AD-PSO-Guided WOA overcomes limitations of conventional optimization algorithms, such as premature convergence by balancing global search (exploration) and local refinement (exploitation). …”
  9. 9

    Prediction results of individual models. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…The AD-PSO-Guided WOA overcomes limitations of conventional optimization algorithms, such as premature convergence by balancing global search (exploration) and local refinement (exploitation). …”
  10. 10

    Wilcoxon test results for feature selection. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  11. 11

    Feature selection metrics and their definitions. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  12. 12

    Statistical summary of all models. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  13. 13

    Feature selection results. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  14. 14

    ANOVA test for feature selection. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  15. 15

    Classification performance of ML and DL models. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  16. 16

    Analysis and design of algorithms for the manufacturing process of integrated circuits by Sonia Fleytas (16856403)

    Published 2023
    “…</p><p>These files contain the following:</p><ul><li>Test cases of Ahn et al. (2019)</li><li>The implementation of the random algorith, the local search algorithm and the greedy algorithm (in Java). …”
  17. 17

    Datasets and their properties. by Olaide N. Oyelade (14047002)

    Published 2023
    “…In addition, we designed nested transfer (NT) functions and investigated the influence of the function on the level-1 optimizer. The binary Ebola optimization search algorithm (BEOSA) is applied for the level-1 mutation, while the simulated annealing (SA) and firefly (FFA) algorithms are investigated for the level-2 optimizer. …”
  18. 18

    Parameter settings. by Olaide N. Oyelade (14047002)

    Published 2023
    “…In addition, we designed nested transfer (NT) functions and investigated the influence of the function on the level-1 optimizer. The binary Ebola optimization search algorithm (BEOSA) is applied for the level-1 mutation, while the simulated annealing (SA) and firefly (FFA) algorithms are investigated for the level-2 optimizer. …”
  19. 19

    Parameter settings. by Yang Cao (53545)

    Published 2024
    “…<div><p>Differential Evolution (DE) is widely recognized as a highly effective evolutionary algorithm for global optimization. It has proven its efficacy in tackling diverse problems across various fields and real-world applications. …”
  20. 20