Search alternatives:
features optimization » feature optimization (Expand Search), mixture optimization (Expand Search), resource optimization (Expand Search)
led optimization » lead optimization (Expand Search), yet optimization (Expand Search), based optimization (Expand Search)
shape features » scale features (Expand Search), image features (Expand Search)
binary shape » binary image (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data led » data lead (Expand Search)
features optimization » feature optimization (Expand Search), mixture optimization (Expand Search), resource optimization (Expand Search)
led optimization » lead optimization (Expand Search), yet optimization (Expand Search), based optimization (Expand Search)
shape features » scale features (Expand Search), image features (Expand Search)
binary shape » binary image (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data led » data lead (Expand Search)
-
61
Description of the datasets.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
62
S- and V-Type transfer function diagrams.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
63
Collaborative hunting behavior.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
64
Friedman average rank sum test results.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
65
IRBMO vs. variant comparison adaptation data.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
66
QSAR model for predicting neuraminidase inhibitors of influenza A viruses (H1N1) based on adaptive grasshopper optimization algorithm
Published 2020“…Obtaining a reliable QSAR model with few descriptors is an essential procedure in chemometrics. The binary grasshopper optimization algorithm (BGOA) is a new meta-heuristic optimization algorithm, which has been used successfully to perform feature selection. …”
-
67
An Example of a WPT-MEC Network.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
68
Related Work Summary.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
69
Simulation parameters.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
70
Training losses for N = 10.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
71
Normalized computation rate for N = 10.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
72
Summary of Notations Used in this paper.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
73
PathOlOgics_RBCs Python Scripts.zip
Published 2023“…</p><p dir="ltr">In terms of classification, a second algorithm was developed and employed to preliminary sort or group the individual cells (after excluding the overlapping cells manually) into different categories using five geometric measurements applied to the extracted contour from each binary image mask (see PathOlOgics_script_2; preliminary shape measurements). …”
-
74
Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports
Published 2020“…<p> The widespread use of electronic patient-generated health data has led to unprecedented opportunities for automated extraction of clinical features from free-text medical notes. …”