Search alternatives:
process optimization » model optimization (Expand Search)
complex optimization » convex optimization (Expand Search), whale optimization (Expand Search), wolf optimization (Expand Search)
simple process » single process (Expand Search), complex process (Expand Search), sample processing (Expand Search)
binary simple » binary image (Expand Search), binary people (Expand Search)
based complex » layer complex (Expand Search)
lens » less (Expand Search)
process optimization » model optimization (Expand Search)
complex optimization » convex optimization (Expand Search), whale optimization (Expand Search), wolf optimization (Expand Search)
simple process » single process (Expand Search), complex process (Expand Search), sample processing (Expand Search)
binary simple » binary image (Expand Search), binary people (Expand Search)
based complex » layer complex (Expand Search)
lens » less (Expand Search)
-
1
Lens imaging opposition-based learning.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
2
-
3
Compare algorithm parameter settings.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
4
-
5
-
6
-
7
-value on CEC2022 (dim = 20).
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
8
Precision elimination strategy.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
9
Results of low-light image enhancement test.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
10
-value on 23 benchmark functions (dim = 30).
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
11
Evaluation metrics obtained by SBOA and MESBOA.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
12
-
13
-
14
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
Published 2019“…<div><p>An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current single-feature classification algorithms and simple multifeature fusion algorithms. …”
-
15
Minisymposterium: Muq-Hippylib: A Bayesian Inference Software Framework Integrating Data with Complex Predictive Models under Uncertainty
Published 2021“…The central questions are: How do we optimally learn from data through the lens of models? …”
-
16
SI2-SSI: Integrating Data with Complex Predictive Models under Uncertainty: An Extensible Software Framework for Large-Scale Bayesian Inversion
Published 2020“…The central questions are: How do we optimally learn from data through the lens of models? …”
-
17
SI2-SSI: Integrating Data with Complex Predictive Models under Uncertainty: An Extensible Software Framework for Large-Scale Bayesian Inversion
Published 2020“…The central questions are: How do we optimally learn from data through the lens of models? …”
-
18
Parameter settings.
Published 2025“…The study proposes a movie recommendation algorithm framework that integrates Knowledge Graph Embedding via Dynamic Mapping Matrix (TransD) and Artificial Intelligence Generated Content (AIGC)-based generative semantic modeling. …”
-
19
Fusion framework.
Published 2025“…The study proposes a movie recommendation algorithm framework that integrates Knowledge Graph Embedding via Dynamic Mapping Matrix (TransD) and Artificial Intelligence Generated Content (AIGC)-based generative semantic modeling. …”
-
20
Generation steps of user profiles.
Published 2025“…The study proposes a movie recommendation algorithm framework that integrates Knowledge Graph Embedding via Dynamic Mapping Matrix (TransD) and Artificial Intelligence Generated Content (AIGC)-based generative semantic modeling. …”