Showing 1 - 6 results of 6 for search '(( binary space bayesian optimization algorithm ) OR ( binary b robust classification algorithm ))', query time: 0.40s Refine Results
  1. 1
  2. 2
  3. 3

    Models and Dataset by M RN (9866504)

    Published 2025
    “…<p dir="ltr"><b>P3DE (Parameter-less Population Pyramid with Deep Ensemble):</b><br>P3DE is a hybrid feature selection framework that combines the Parameter-less Population Pyramid (P3) metaheuristic optimization algorithm with a deep ensemble of autoencoders. …”
  4. 4

    Supplementary Material 8 by Nishitha R Kumar (19750617)

    Published 2025
    “…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…”
  5. 5

    iNCog-EEG (ideal vs. Noisy Cognitive EEG for Workload Assessment) Dataset by Fariya Bintay Shafi (21692408)

    Published 2025
    “…</p><h3>Applications</h3><p dir="ltr">This dataset can be applied to a wide range of research areas, including:</p><ul><li>EEG signal denoising and artifact rejection</li><li>Binary and hierarchical <b>cognitive workload classification</b></li><li>Development of <b>robust Brain–Computer Interfaces (BCIs)</b></li><li>Benchmarking algorithms under <b>ideal and noisy conditions</b></li><li>Multitasking and mental workload assessment in <b>real-world scenarios</b></li></ul><p dir="ltr">By combining controlled multitasking protocols with deliberately introduced environmental noise, <b>iNCog-EEG provides a comprehensive benchmark</b> for advancing EEG-based workload recognition systems in both clean and challenging conditions.…”
  6. 6

    Image_1_Validation of miRNA signatures for ovarian cancer earlier detection in the pre-diagnosis setting using machine learning approaches.pdf by Konrad Stawiski (4753380)

    Published 2024
    “…We employed the extreme gradient boosting (XGBoost) algorithm to train a binary classification model using 70% of the available data, while the model was tested on the remaining 30% of the dataset.…”